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Preface

This book focuses on motions of incompressible fluids of a freely moving surface
being influenced by both the Earth’s rotation and density stratification. In contrast
to traditional textbooks in the field of geophysical fluid dynamics, such as those by
by Cushman-Roisin (1994) and Gill (1982), this book uses the method of process-
oriented hydrodynamic modelling to illustrate a rich variety of fluid phenomena.
To this end, the reader can adopt the model codes, found on the Springer server
accompanying this book, to reproduce most graphs of this book and, even better,
to create animation movies. The reader can also employ the codes as templates for
own independent studies. This can be done by a lay person as a hobby activity,
undergraduate or postgraduate students as part of their education, or professional
scientists as part of research.

Exercises of this book are run with open-source software that can be freely
downloaded from the Internet. This includes the FORTRAN 95 compiler “G95”
used for execution of model simulations, the data visualisation program “SciLab”,
and “ImageMagick” for the creation of graphs and GIF animations, which can be
watched with most Internet browsers.

Readers new to the subject are advised to read my book “Ocean Modelling for
Beginners” (Kämpf, 2009), which gives descriptions, not replicated here, of the
basics of geophysical fluid dynamics, finite-difference modelling, and the use of the
above software suites. The latter book deals with so-called layer models, predicting
the motions of multiple layers of different densities and freely moving interfaces.
Such models are used in practice as forecasting tools for tides and tsunamis. The
latter book also contains a detailed description of the Coriolis force. This force con-
tributes to the geostrophic balance that makes the larger-scale oceanic dynamics
much more structured and predictable than turbulent motions in a tea cup. The
reader is advised to review the Coriolis force which plays a crucial role in many
phenomena described here. This book focuses on so-called level models which, in
contrast to layer models, are capable of simulating vertical mixing processes such
as density-driven convection or breaking internal waves.

I dedicate this book to my doctor father Professor Jan O. Backhaus for his cre-
ativity and overwhelming enthusiasm which have been the prime motivation for
me to pursue a career in the field of physical oceanography. I particularly remem-
ber discussions with Jan on how to include a free sea surface in a nonhydrostatic
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convection model, a problem that neither of us could resolve at that time. I have
included such a model in this book. Other invaluable sources of motivation behind
this work are the classical books of Henry Stommel, namely “An Introduction to the
Coriolis Force” published in 1989 and co-authored by Dennis Moore, and “A View
of the Sea”, published in 1987. Similar to the approach I take here, Stommel’s work
underpins theory with computer programs, written in BASIC, that can be run by the
reader for illustration of dynamical processes.

Adelaide, Australia, Jochen Kämpf
October 2009
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Chapter 1
Introduction

Abstract This chapter reviews the Navier-Stokes equations for an incompressible
fluid, summarises the basics of finite-difference modelling, and gives an overview
of softwares required for the conduction of exercises.

1.1 Fundamental Physical Laws

1.1.1 Cartesian Coordinates

For convenience, locations are defined by means of the Cartesian coordinate system
(Fig. 1.1) in which the vertical axis points upward at right angle to the undisturbed
surface of a fluid at rest. Horizontal coordinates are denoted by x and y. The x-axis
points to the east. The y-axis points to the north. The undisturbed surface of the
fluid is defined by z = 0. Use of a Cartesian coordinate system implies that the
true curvature of the sea surface is ignored, which is a reasonable approximation for
oceanic processes on spatial scales < 500 km.

1.1.2 The Navier-Stokes Equations

The Navier-Stokes equations comprise several physical conservation principles; that
is, conservation of momentum (Newton’s laws of motion), conservation of mass
(which turns into conservation of volume for an incompressible fluid), and conser-
vation of field variables such as temperature and salinity that via the equation of
state give density (which appears in the buoyancy force). In Cartesian coordinates,
the momentum equations can be written as:

∂u

∂t
+ Adv(u) − f v = − 1

ρo

∂ P

∂x
+ Diff(u)

∂v

∂t
+ Adv(v) + f u = − 1

ρo

∂ P

∂y
+ Diff(v) (1.1)

∂w

∂t
+ Adv(w) = − 1

ρo

∂ P

∂z
− (ρ − ρo)

ρo
g + Diff(w)
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2 1 Introduction

Fig. 1.1 The Cartesian coordinate system

where (x, y, z) is location in the Cartesian coordinate system, (u, v, w) is the veloc-
ity vector, t is time, f is the Coriolis parameter, P is dynamic pressure, ρ is density,
mean density is ρo, and g is acceleration due to gravity. Density is weight of sea-
water per unit volume. The operator Adv() denotes the advection terms and is given
by:

Adv(ψ) = u
∂ψ

∂x
+ v

∂ψ

∂y
+ w

∂ψ

∂z

where ψ is the property subject to advection. Momentum advection is also referred
to as the nonlinear terms. Diffusion of any of the three velocity components is given
by:

Diff(ψ) = ∂

∂x

(
Ah

∂ψ

∂x

)
+ ∂

∂y

(
Ah

∂ψ

∂y

)
+ ∂

∂z

(
Az

∂ψ

∂z

)

where Ah and Az are horizontal and vertical eddy viscosities parameterising the
effects of turbulence. Dynamic pressure includes only pressure parts that have a
dynamical consequence. The pressure field associated with uniform density and a
plane sea surface does not contribute to the horizontal pressure-gradient force and it
can therefore be subtracted from the true pressure field.

The Boussinesq approximation, used in the above equation, is based on the
assumption that density fluctuations are small compared with mean density, which is
the case for oceanic applications. To this end, density can be expressed by a constant
value except when multiplied with gravity.

The essence of the momentum equations is that an imbalance of forces acting
on a fluid parcel causes an acceleration or deceleration of the parcel. On the other
hand, motions remain steady if the residual force vanishes, a situation referred to as
steady state.

For an incompressible fluid, mass conservation turns in a conservation principle
for volume, which can be expressed by the continuity equation, given by:

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (1.2)
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When ignoring slight nonlinearities and molecular (double-diffusive) effects and
for an incompressible fluid, the evolution of the density field can be expressed by a
density conservation equation, given by:

∂ρ

∂t
+ Adv(ρ) = Diff(ρ) (1.3)

The diffusion operator in the latter equation is given by:

Diff(ρ) = ∂

∂x

(
Kh

∂ρ

∂x

)
+ ∂

∂y

(
Kh

∂ρ

∂y

)
+ ∂

∂z

(
Kz

∂ρ

∂z

)

where Kh and Kz are horizontal and vertical eddy diffusivities of density which can
differ from eddy viscosities.

An additional equation is required for prediction of the evolution of the free
sea surface, which gives the surface boundary values for dynamic pressure in the
momentum equations. This equation can be derived from vertical integration of the
continuity equation (Eq. 1.2) and is given by:

∂η

∂t
= −∂(h 〈u〉)

∂x
− ∂(h 〈v〉)

∂y
(1.4)

where h is total fluid depth, and 〈u〉 and 〈v〉 are depth-averaged values of horizontal
velocity components.

Depth-constant horizontal flow components are referred to as barotropic flow,
whereas the superposed depth-variable component is called baroclinic flow. For
purely hydrostatic dynamics, a slanted sea surface is the principal agent of barotropic
flow. In contrast, baroclinic flow is created by lateral density gradients and/or
frictional effects.

1.1.3 Boundary Fluxes

In addition to initial conditions, the Navier-Stokes equations require information
of boundary fluxes of variables. This includes tangential frictional stresses (wind
stress, bottom friction, and lateral friction), and air-sea heat and freshwater fluxes.
These fluxes will be detailed in due course of this book.

1.1.4 The Hydrostatic Approximation

For processes of a horizontal length scale large compared with the vertical length
scale, the momentum equation for vertical velocity w turns into the hydrostatic
approximation, given by:
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0 = −∂ P

∂z
− ρg (1.5)

The hydrostatic approximation forms the basis of the so-called shallow-water
model and it is employed in so-called hydrostatic level models, being frequently
applied by fluid modellers. In contrast, models developed in this volume are based
on the full equations (Eq. 1.1) to enable the predictions of both hydrostatic and non-
hydrostatic processes, a method called nonhydrostatic modelling. Nonhydrostatic
processes include those in which horizontal and vertical scales are of similar order
of magnitude.

1.1.5 The Stability Frequency

The degree of density stratification in the ocean can be characterised by the so-called
Brunt-Väisälä frequency N , defined by:

N 2 = − g

ρo

∂ρ

∂z
(1.6)

where ρo is mean density. This frequency, which appears as a characteristic scale
for many stratified processes, is referred to as stability frequency in the following.

1.2 Numerical Methods

1.2.1 Finite Differences

Models developed in this book are based on finite-difference versions of the Navier-
Stokes equations. The basis is that dynamic variables (velocity components, sea
level, density, and dynamic pressure) are calculated at certain discrete grid points in
space. This requires an accurate representation of both gradients (the first derivative)
and curvature (the second derivative) of the spatial distribution of a variable. These
derivatives can be approximated from Taylor series. The first spatial derivative of a
variable f , for instance, with respect to a space coordinate x can be approximated
in three different ways:

• ∂ f/∂x ≈ ( fk+1 − fk)/Δx (forward difference)
• ∂ f/∂x ≈ ( fk − fk−1)/Δx (backward difference)
• ∂ f/∂x ≈ ( fk+1 − fk−1)/(2Δx) (centred difference)

where Δx is the spacing between adjacent grid points, called grid spacing, and the
index k points to a certain grid cell along the x-axis. A finite-difference representa-
tion of the second spatial derivative of a function f is:
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∂2 f

∂x2
≈ f (x + Δx) − 2 f (x) + f (x − Δx)

(Δx)2
= fk+1 − 2 fk + fk−1

(Δx)2

A certain truncation error is made when using these approximations. Higher-
order finite-difference schemes, not detailed in this book, can be used to reduce the
truncation error.

1.2.2 Requirements for a Finite-Difference Model

A finite-difference model needs to satisfy the four requirements:

• Consistency
• Accuracy
• Numerical stability
• Efficiency

The first requirement is that the finite-difference equations have to be consistent
with the differential equations describing a physical process. The second require-
ment is that the model prediction should be as accurate as possible; that is, truncation
errors and round-off errors should be kept as small as possible. The third require-
ment is that the prediction has to be numerically stable. Certain stability criteria
need to be satisfied in order to achieve this. The forth requirement is that a model
simulation should be as efficient as possible in terms of total simulation time and
the amount of data produced.

1.3 Modelling with FORTRAN 95

1.3.1 Writing and Compiling Codes

FORTRAN 95 is used as programming language to calculate the evolution of a
dynamical process being described by a set of finite-difference equations. FOR-
TRAN codes are written as text documents saved with the file extension “.f95” for
later identification. Using the open-source “G95” FORTRAN compiler, these files
are converted into an executable file by entering:

g95 file.f95

in the Command Prompt window. On Microsoft Windows operation systems, the
Command Prompt window is found under Start/All Programs/Accessories. The G95
FORTRAN compiler is available for many different computer platforms and can be
downloaded from:

http://www.g95.org
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1.3.2 Modular Source Codes

FORTRAN source codes of this book consist of several text files, a main program
plus separate so-called modules. Most exercises of this book use two separate mod-
ule files. One module contains hereby global declarations, the other one all subrou-
tines and functions. Figure 1.2 displays these components and how they are linked
with each other.

Fig. 1.2 Code structure and associated file names

The compiling of a multiple file FORTRAN code consists of two steps. The
modules are first compiled with:

g95 -c file2.f95 file3.f95

Then, the module files can be linked with the main code via:

g95 -o run.exe file1.f95 file2.o file3.o

where the “-o” allows for specification of a name of the executable program, called
“run.exe” in this example. The code can then be executed by entering “run.exe” in
the Command Prompt window. The above example is for Microsoft Windows oper-
ation systems. Executable files carry a different file extension for other operation
systems.

1.4 Visualisation with SciLab

1.4.1 Writing SciLab Scripts

The open-source SciLab software suite is used for visualisation of results. SciLab is
available from:
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http://www.scilab.org

SciLab scripts are formulated as text documents with the file extension “.sce”.
SciLab is a windows-based application software. It has a main control window, a
script-based editor window, and a graphics display window. For more information
on the use of SciLab, the reader should study the tutorial found on the Springer
server. The author has used Version 5.1.1.

1.4.2 GIF Animations

A numbered sequence of GIF files is produced with addition of the following lines
at the end of a SciLab animation loop:

if n < 10 then
xs2gif(0,’Frame100’+string(n)+’.gif’)

else
if n < 100 then

xs2gif(0,’Frame10’+string(n)+’.gif’)
else

xs2gif(0,’Frame1’+string(n)+’.gif’)
end

end

In this example, “0” refers to the index of the graphics window, the index n is
the loop counter used in the animation loop. This produces the sequence of GIF
files: Frame1001.gif, Frame1002.gif, Frame1003.gif, etc. The open-source software
ImageMagick can be downloaded from:

http://www.imagemagick.org/

This software can be used to convert these GIF frame files into a single GIF anima-
tion, that can be viewed in many Internet browsers. Conversion into an animated GIF
file, called “Animation.gif”, for example, is achieved by entering in the Command
Prompt window:

convert -delay 10 Frame*.gif Animation.gif

where the delay option specifies the time lapse between frames in milliseconds.
After creation of an animated GIF file, the reader should delete individual frame
files to free up some space on the computer by entering:

del Frame*.gif
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1.5 Organisation of Work

The author recommends to keep all FORTRAN, SciLab and data files belonging
to an exercise in a single folder. Opening SciLab from this folder will open the
SciLab program in the right directory finding the relevant data input files, previously
created by a FORTRAN code. This “single-folder approach” helped the author to
save valuable amounts of time that otherwise would have been wasted on endless
file searches.

1.6 Download of Computer Codes

FORTRAN simulation codes and SciLab animation scripts for exercises of this book
can be downloaded from:

http://extra.springer.com

A file called “Info.txt” is provided for each exercise giving further instructions.
Additional codes referred to in the text are found in the folder “Miscellaneous” on
the above ftp site. Files can be downloaded with right-mouse click and “Save Target
as...”. The author made these codes only available for “lazy” readers. Best learning
outcomes are achieved when creating own codes from scratch.



Chapter 2
1D Models of Ekman Layers

Abstract This chapter introduces the reader to one-dimensional water-column
models using fixed vertical levels. Such a model is applied to study the dynamics of
surface and bottom Ekman layers in the ocean.

2.1 Useful Background Knowledge

2.1.1 Inertial Oscillations

Before exploring the Ekman-layer dynamics, it is useful to revisit features inherent
with inertial oscillations. Flows under the sole influence of the Coriolis force are
described by the momentum equations:

∂u

∂t
+ f v = 0 (2.1)

∂v

∂t
− f u = 0 (2.2)

where f is the Coriolis parameter, given by f = 2Ω sin(ϕ), where Ω = 7.27 ×
10−5s−1 is the rotation frequency of Earth, and ϕ is geographical latitude in radians.
For an initial flow in the x-direction of speed uo, the solution of the latter equations
is given by:

u(t) = +uo cos ( f t)

v(t) = −uo sin ( f t)

The resultant flow trajectories are circles of a radius of uo/ | f |, called inertial
radius. The period of one complete cycle is 2π/ f , called inertial period. The inertial
period is 12 hrs at the poles and infinite directly at the equator where the Coriolis
force vanishes. Figure 2.1 shows flow paths associated with inertial oscillations for
uo = 0.1 m/s and f = 1 × 10−4s−1 with and without ambient uniform flow.

J. Kämpf, Advanced Ocean Modelling, DOI 10.1007/978-3-642-10610-1 2,
C© Springer-Verlag Berlin Heidelberg 2010
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Fig. 2.1 Examples of flow paths induced by inertial oscillations (a) in the absence of ambient flow,
and (b) for an ambient flow of uamb = vamb = 0.02 m/s. The open circle shows the starting position
of a float, the closed circle the end position

2.1.2 Semi-implicit Treatment of the Coriolis Force

Adequate formulation of the Coriolis force in a finite-difference model can be
achieved by means of a semi-implicit approach. For the momentum equations gov-
erning inertial oscillations (Eqs. 2.1 and 2.2), this approach gives:

un+1 = un + 0.5 α(vn + vn+1)

vn+1 = vn − 0.5 α(un + un+1)

where n is the current time level, n + 1 refers to the future value (one time step
Δt ahead), and α = Δt f . Cross-combination of the latter equations yields the final
form:

un+1 = [
(1 − β)un + αvn

]
/(1 + β)

vn+1 = [
(1 − β)vn − αun

]
/(1 + β)

where β = 0.25 α2. This scheme requires numerical time steps small compared with
the rotation period; that is, |α| << 1, otherwise the period of the parcel’s circular
motion will differ from the true value. This semi-implicit scheme is widely used by
modellers.
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2.2 The Surface Ekman Layer

2.2.1 Boundary-Layer Equations

This section explores the dynamics of frictional boundary layers in the ocean, called
Ekman layers (Ekman, 1905). For simplicity, we assume horizontal homogeneity of
all variables and an ocean of uniform density, so that the Navier-Stokes equations
take the reduced form:

∂u

∂t
− f v = ∂

∂z

(
Az

∂u

∂z

)
(2.3)

∂v

∂t
+ f u = ∂

∂z

(
Az

∂v

∂z

)
(2.4)

where f is the Coriolis parameter, and the terms on the right-hand side of these
boundary-layer equations represent vertical turbulent diffusion of momentum with
Az being vertical eddy viscosity.

Wind stress operates as a tangential frictional force at the sea surface, and the
associated boundary conditions read:

(
Az

∂u

∂z

)
z=0

= τwind
x

ρo
and

(
Az

∂v

∂z

)
z=0

= τwind
y

ρo
(2.5)

where ρo is surface density. The components of the wind-stress vector are given by:

τwind
x = ρairCd U

√
U 2 + V 2 and τwind

y = ρairCd V
√

U 2 + V 2 (2.6)

where ρair is air density, Cd is the nondimensional wind-drag coefficient with values
in a range of 1.1 − 1.5 × 10−3, and U and V are horizontal components of the wind
vector measured at a height of 10 m above sea level. The wind stress vector field
has the same direction as the wind, but its magnitude is proportional to the square of
the wind speed. Hence, the stronger the wind the greater are its impacts on surface
flows.

The wind stress creates tangential friction along the sea surface and, thus, trans-
fers momentum into the ocean. On time scales of days, the resultant oceanic motion
becomes influenced by the Coriolis force. In the absence of other influences, final
steady state consists of a dynamical balance between the Coriolis force and the
friction force. What is the structure of the resultant steady-state flow pattern?

2.2.2 Scaling: The Temporal Rossby Number

Consider an oscillatory flow of a maximum speed of Uo on a period of T . On the
basis of this, the Coriolis force attains a maximum value of f Uo. On the other hand,
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the order of magnitude of the temporal derivative in Eq.(2.3) can be estimated at:

∂u

∂t
≈ Uo

T

The ratio of this estimate with that of the Coriolis force in the boundary-layer
equations is given by:

Rot = 1

f T
(2.7)

and is called the temporal Rossby number. This comparative ratio implies that the
Coriolis force can no longer be neglected in the momentum equations if Rot ≈ 1, or,
in other words, if the time scale of a process (establishment of a frictional boundary
layer here) is of the order of the inertial period, given by 2π/f. Hence, except for
the equatorial regions, where the inertial period becomes long, the Coriolis force
becomes important if a flow lasts longer than a few days. Considerations based on
typical scales of motion and comparative ratios of terms in the momentum equations
are called scaling considerations.

2.2.3 Scaling: The Ekman Number

For a steady state, the Coriolis force is balanced by the frictional force associated
with vertical diffusion of momentum. The form of the boundary equations (Eqs. 2.3
and 2.4) implies that lateral velocity varies exponentially with depth. With such a
velocity profile; that is,

u(z) = Uo exp (z/D)

where Uo is the surface value and D is a depth scale, the magnitude of the fric-
tional force is AzUo/D2, assuming vertical eddy viscosity to be uniform. The ratio
between this magnitude with that of the Coriolis force is called the Ekman number
and is given by:

Ek = Az

D2 f
(2.8)

Accordingly, a steady state of the boundary-layer equations (Eqs. 2.3 and 2.4)
implies that Ek ≈ 1, which corresponds to a depth scale of:

D =
√

Az

f
(2.9)
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Consequently, surface Ekman layers in the ocean are limited in their vertical
extent. Typical thicknesses are 50–150 m with increasing values toward the equator.

2.2.4 Solutions of the Boundary-Layer Equations

The analytical solutions of the boundary-layer equations are derived and discussed
in many textbooks (e.g. Cushman-Roisin, 1994). These solutions are a first bench-
mark for verification of a one-dimensional finite-difference water-column model
being constructed in the next section. This approach also gives us the opportunity
to explore situations of nonuniform values of vertical eddy viscosity for which
analytical solutions are more difficult to derive.

2.2.5 Finite-Difference Equations

The water column is represented by grid cells stacked on top of each other with a
vertical grid spacing of Δz and a grid index i with i = 1 pointing to the surface cell
and i = nz to the bottom cell (Fig. 2.2). In this one-dimensional application, values
of velocity components and eddy viscosity are calculated at the same grid point. The
uppermost grid point is located at a distance of 0.5Δz below the sea surface.

Fig. 2.2 Grid index, grid points and grid spacing for Ekman-layer modelling
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Use of the semi-implicit approach for the Coriolis force leads to the finite-
difference equations:

un+1
i = un

i + 0.5 α(vn
i + vn+1

i ) + Diffu (2.10)

vn+1
i = vn

i − 0.5 α(un
i + un+1

i ) + Diffv (2.11)

where n is the current time level, n + 1 refers to the future value (one time step Δt
ahead), α = Δt f , and Diffu and Diffv are the diffusion terms. Cross-combination
of the latter equations gives:

un+1
i = [

(1 − β)un
i + αvn

i + 0.5αDiffv + Diffu
]
/(1 + β) (2.12)

vn+1
i = [

(1 − β)vn
i − αun

i − 0.5αDiffu + Diffv
]
/(1 + β) (2.13)

with β = 0.25 α2. Accurate representation of the Coriolis force requires Δt <<

1/ | f |.

2.2.6 Formulation of Diffusion Terms

In finite-difference form, the diffusion terms can be written as:

Diffu = Δt
A+

z

(
un

i−1 − un
i

)
/Δz − A−

z

(
un

i − un
i+1

)
/Δz

Δz
(2.14)

Diffv = Δt
A+

z

(
vn

i−1 − vn
i

)
/Δz − A−

z

(
vn

i − vn
i+1

)
/Δz

Δz
(2.15)

where Az is vertical eddy viscosity with A+
z = 0.5(Az,i−1 + Az,i ) and A−

z =
0.5(Az,i + Az,i+1).

2.2.7 Stability Criterion for Diffusion Terms

The above finite-difference form of the diffusion terms is associated with the stabil-
ity criterion:

Δt ≤ (Δz)2

Az,max
(2.16)

where Az,max is the maximum value that vertical eddy viscosity attains during a
simulation. The time step chosen has to satisfy Eq. 2.16, otherwise the prediction
becomes numerically unstable causing the computer code to crash.
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2.3 Exercise 1: The Surface Ekman Layer

2.3.1 Task Description

We consider a water column, 500 m in depth, represented by an equidistant vertical
grid spacing of 1 m. The Coriolis parameter is chosen as f = 1 × 10−4s−1 corre-
sponding to mid-latitudes in the Northern Hemisphere. The water column is initially
at rest. The model is forced via prescription of a southerly wind of a wind stress of
τy = 0.5 Pa in magnitude.

The total simulation time is 5 days. To avoid the appearance of strong inertial
oscillations, the wind stress is linearly adjusted from zero to its final value over the
first 2 days of simulation. The time step is set to Δt = 5 s.

The surface wind stress enters the finite-difference equations implicitly via the
boundary values un

0 and vn
0 . Using Eq. (2.5), these values are calculated from:

un
0 = un

1 + τwind
x

ρo A+
z

Δz (2.17)

vn
0 = vn

1 + τwind
y

ρo A+
z

Δz (2.18)

where A+
z = 0.5(Az,0 + Az,1) with Az,0 representing vertical eddy viscosity near the

sea surface. The following three different eddy-viscosity scenarios are considered
in this exercise:

1. Eddy viscosity is uniform with a constant value of Az = 5 × 10−2 m2 s−1;
2. Same as before, but with a local minimum of Az = 4 × 10−3 m2 s−1 around a

depth of 20 m mimicking a reduction of turbulence levels by an assumed strong
local density stratification;

3. Eddy viscosity is calculated from Prandtl’s mixing-length approach (Prandtl, 1925)
according to:

Az = L2
√

(∂u/∂z)2 + (∂v/∂z)2

where, for simplicity, the mixing length is set to a constant value of L = 2 m.

Only results of the first scenario are presented here. The other scenarios are
included as options in the FORTRAN 95 code and remain for the reader to be tested.
The resultant steady-state flow pattern is visualised via displacements of neutrally
buoyant floats. To this end, a prediction scheme for neutrally buoyant floats is added
to the code. Initially, floats form a vertical line and lateral displacements are pre-
dicted with:

Xn+1 = Xn + Δt u

Y n+1 = Y n + Δt v
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where (X, Y ) is the location of a float, and (u, v) is horizontal velocity at the depth
horizon of this float.

2.3.2 Results

The wind-stress forcing imposed creates a lateral current in the ocean being strongest
at the surface and decreasing rapidly with depth (Fig. 2.3). The surface current is
directed 45◦ to the right with respect to the wind direction in the Northern Hemi-
sphere. The flow direction turns clockwise with increasing distance from the sea
surface. The final shape is called the Ekman spiral. The Ekman-layer depth can
be defined as the depth at which the speed of the Ekman flow has decreased to
exp (−π ) ≈ 0.04 (4%) of its surface value. According to theory, this takes place at
a depth of:

δE = π

√
2Az

| f | (2.19)

yielding 100 m for the setting of this exercises. This is in excellent agreement with
the simulation result. Note that some textbooks define the Ekman-layer depth with-
out the π multiplier.

Fig. 2.3 Exercise 1. Structure of the surface Ekman layer (Northern Hemisphere). Small arrows
indicate lateral float displacements shown from the surface to a depth of 100 m at steps of 10 m.
The thick arrow indicates the wind direction
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2.3.3 Explanation of the Ekman-Layer Structure

Imagine that the ocean consists of multiple thin layers piled up on top of each other
(Fig. 2.4a). Each layer is forced by the overlying layer by a tangential stress and,
itself, is subject to friction with the layer underneath. Friction operates opposite to
the drift direction of a layer. The Coriolis force acts perpendicular to this direction,
to the right in the Northern Hemisphere and to the left in the Southern Hemisphere.
A balance of forces (Fig. 2.4b) implies now that the direction of movement of a
layer is turned by a certain fraction clockwise (Northern Hemisphere) with respect
to the overlying layer.

Fig. 2.4 Illustration of the structure of the surface Ekman layer in the Northern Hemisphere

The friction force at the bottom of a layer acts as a surface stress (in the
opposite direction) for the next deeper layer. Since this surface stress forms the
longest side (hypotenuse) of the right-angled force triangle, this tangential stress
has to decrease from one layer to the next deeper one such that the drift speed
decreases with depth. Consequently, the resultant layer motions make up an Ekman
spiral.

2.3.4 Additional Exercises for the Reader

Repeat the simulation for the other eddy-viscosity scenarios outlined above. Cal-
culate depth-averaged values of the components of horizontal velocity and produce
data outputs on hourly intervals. Theory suggest that the depth-averaged flow in the
Ekman layer is at right angle with respect to the wind direction, to the right in the
Northern Hemisphere and to the left in the Southern Hemisphere (e.g. Pond and
Pickard, 1983). Does the model yield the same result? If not, explore the time-
average values of the results and consider what you have learned about inertial
oscillations.
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2.4 The Bottom Ekman Layer

2.4.1 Boundary-Layer Equations

A bottom Ekman layer develops owing to frictional effects experienced by a flow in
contact with the sea floor. For simplicity, this ambient (geostrophic) flow of vector
components ugeo and vgeo is assumed to be horizontally uniform and the sea floor is
assumed to be plane. With horizontal homogeneity of all variables, the boundary-
layer equations can then be formulated as:

∂ û

∂t
− f v̂ = ∂

∂z

(
Az

∂ û

∂z

)
(2.20)

∂v̂

∂t
+ f û = ∂

∂z

(
Az

∂v̂

∂z

)
(2.21)

where û = u − ugeo and v̂ = v − vgeo are flow variations with respect to the ambient
flow. Forcing is indirectly provided by the condition of vanishing flow at the sea
floor; that is, û = −ugeo and v̂ = −vgeo. Mathematically, this problem is equivalent
to the situation of a fluid at rest but a sea floor moving horizontally at a velocity of
(−ugeo,−vgeo).

2.5 Exercise 2: The Bottom Ekman Layer

2.5.1 Task Description

Take the same grid configuration and initial conditions as in Exercise 1. Forcing
is provided by prescription of an ambient uniform geostrophic flow of a speed of
vgeo = 0.1 m/s directed to the north. For simplicity, uniform vertical eddy viscosity
is used with a value of Az = 5 × 10−3 m2 s−1. The time step is set to Δt = 5 s.
The total simulation time is 5 days with data output of the flow field at the end of
the simulation. Note that implementation of a bottom-friction law is not necessary
here, since bottom friction arises implicitly via prescription of a near-bottom value
of eddy viscosity in conjunction with the assumption of vanishing flow at the sea
floor.

2.5.2 Results

Like in the surface Ekman layer, the Coriolis force produces an Ekman spiral near
the sea floor (Fig. 2.5). In the bottom layer, however, the flow turns toward the left
with respect to the direction of the ambient flow as we move closer to the sea floor.
Here, it is the sea floor that imposes a frictional stress on the fluid. In this sense, the
dynamics that make up the bottom Ekman layer is very similar to features of the
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Fig. 2.5 Exercise 2. Structure of the bottom Ekman layer (Northern Hemisphere) Small arrows
indicate lateral float displacements shown from the sea floor upward at steps of 5 m. The thick
arrow indicates the displacement of a fluid parcel carried by ambient flow above the bottom Ekman
layer

surface Ekman layer when turning the water column upside down and when imag-
ining a sea floor moving at a speed of 0.1 m/s along the “surface” of a fluid being
initially at rest. As for the surface Ekman layer, (2.19) determines the thickness of
the Ekman layer. Bottom Ekman layers in the ocean attain thicknesses of 5–50 m.
In this exercise, we yield a thickness of around 20 m.

2.5.3 Additional Exercises for the Reader

Consider a situation of a southerly wind of a wind-stress magnitude of τy = 0.5 Pa
in magnitude in conjunction with a northward ambient geostrophic flow of vgeo =
0.1 m/s in speed. Conduct a sequence of experiments with total water depth h vary-
ing between 20 and 200 m. For which value of h do the surface and bottom Ekman
layers appear as separate features without overlapping? The reader is also encour-
aged to simulate Ekman-layer dynamics for the Southern-Hemisphere situation.



Chapter 3
Basics of Nonhydrostatic Modelling

Abstract This chapter introduces the reader to nonhydrostatic finite-difference
solvers of the Navier-Stokes equations. For a start, the ocean is treated as as vertical
slice. Flow and gradients of variables normal to this plane are assumed to vanish, and
the Coriolis force is ignored. Exercises address deep-water (short) surface gravity
waves, bottom-attached density-driven currents, internal waves, instabilities of ver-
tical shear flows, lee waves, double-diffusive instability, double-diffusive layering
and free convection.

3.1 Level Models

The most common types of vertical level models used in the field of oceanography
are z-coordinate models and σ -coordinate models (Fig. 3.1). Z -coordinate models
are based on fixed vertical levels of vertical grid spacing Δz. A shortcoming of
z-coordinate models is a step structure of bottom topography which can lead to
certain problems. In contrast to this, coordinate surfaces in σ -coordinate models
follow the sea floor. The σ -coordinate is defined by:

σ = ho + z

ho + η

where z is the Cartesian vertical coordinate, ho is undisturbed water depth, and η

is sea-surface elevation. Accordingly, σ varies from zero at the sea floor to unity
at the sea surface. Note that σ -coordinates respond to fluctuations of the sea level.
Hydrodynamic models based on σ -coordinates are suitable for coastal applications,
but steep bottom slopes can cause substantial truncation errors. Models based on
σ -coordinates are not considered in this book.

J. Kämpf, Advanced Ocean Modelling, DOI 10.1007/978-3-642-10610-1 3,
C© Springer-Verlag Berlin Heidelberg 2010

21



22 3 Basics of Nonhydrostatic Modelling

Fig. 3.1 Illustration of vertical levels in z-coordinate models and in σ -coordinate models

3.2 2D Vertical-Slice Modelling

3.2.1 Configuration

We consider a vertical ocean slice with the z-axis pointing upward and the x-axis
being the horizontal coordinate (Fig. 3.2). The free sea surface is located at z =
η. The sea floor can be found at z = −ho. The assumption of this chapter is
absence of both motion and gradients of variables perpendicular to this slice. This
implies neglect of the Coriolis force. A modification to the latter are so-called
2.5-dimensional ocean-slice models which allow for flow normal to the slice and
inclusion of the Coriolis force, but this flow is also assumed to have vanishing
gradients in the y-direction. Chapter 4 presents applications of such models. The
momentum equations for the two-dimensional ocean slice are given by:

∂u

∂t
+ Adv(u) = − 1

ρo

∂ P

∂x
+ ∂

∂x

(
Ah

∂u

∂x

)
+ ∂

∂z

(
Az

∂u

∂z

)

∂w

∂t
+ Adv(w) = − 1

ρo

∂ P

∂z
− ρ ′

ρo
g + ∂

∂x

(
Ah

∂w

∂x

)
+ ∂

∂z

(
Az

∂w

∂z

)
(3.1)

∂ρ ′

∂t
+ Adv(ρ ′) = ∂

∂x

(
Kh

∂ρ ′

∂x

)
+ ∂

∂z

(
Kz

∂ρ ′

∂z

)

The advection operator is given by:

Adv(ψ) = u
∂ψ

∂x
+ w

∂ψ

∂z
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Fig. 3.2 The two-dimensional vertical ocean slice

The continuity equation (Eq. 1.2) can be written as:

∂u

∂x
+ ∂w

∂z
= 0 (3.2)

3.2.2 The Arakawa C-Grid

Figure 3.3 shows the configuration of the Arakawa C-grid (Arakawa and Lamb, 1977)
applied to the vertical ocean slice. This grid is the basis for all exercises of this book.
Vertical location is defined by the level index i and vertical grid spacing Δz. The
uppermost grid cell carries the index i = 1, whereas i = nz points to the bottom
layer. Grid points for pressure and other scalars (i.e. density) are centred between
u- and w-velocity grid points. The undisturbed sea surface is aligned with vertical
velocity grid points of uppermost grid cells.

Fig. 3.3 Arakawa C-grid for a vertical ocean slice
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Bottom topography is implicitly defined by setting velocity components normal
to solid boundaries to zero. This leads to a step-like representation of the sea floor.

3.3 Surface Gravity Waves

3.3.1 The Governing Equations

Plane waves are waves of unidirectional propagation. Crests and troughs are ori-
ented perpendicular to this direction. Plane surface gravity waves propagating in
the x-direction in a fluid of uniform density can be described by the simplified
Navier-Stokes equations:

∂u

∂t
= − 1

ρo

∂ P

∂x
∂w

∂t
= − 1

ρo

∂ P

∂z
(3.3)

∂u

∂x
+ ∂w

∂z
= 0

where u is horizontal velocity, w is vertical velocity, ρo is a constant reference
density, and P is dynamic pressure. For simplicity, nonlinear terms and frictional
effects have been neglected here to first-order approximation.

The evolution of sea level is described by the volume-conservation equation:

∂η

∂t
= −∂(h 〈u〉)

∂x
(3.4)

This equation is coupled to the momentum equations via a relation between sea-
level elevation and dynamic pressure at the undisturbed sea surface (z = 0). Here,
we apply the hydrostatic approximation, yielding:

Ps = ρogη (3.5)

Despite this approximation, the governing equations can still describe nonhydro-
static processes, as will be demonstrated in the following exercise.

3.3.2 The Dispersion Relation

For a wave of a surface appearance of the form:

η = ηo sin

(
2π

λ
x − 2π

T
t

)
(3.6)
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where ηo is wave amplitude, λ is wavelength and T is wave period, the solution of
Eqs. (3.3, 3.4, and 3.5) are surface gravity waves that for an ocean of uniform depth
h obey the dispersion relation (e.g. Pond and Pickard, 1983):

c = λ

T
=

√
gλ

2π
tanh

(
2π

h

λ

)
(3.7)

where c is the phase speed of the wave. Figure 3.4 displays the phase speed of
surface gravity waves as a function of total water depth for selected wavelengths.
The dispersion relation includes two different breeds of surface gravity waves that
exist in the ocean. The ratio between wavelength and total water depth determines
which breed dominates. The first breed are shallow-water waves (or long waves)
which can be characterised by λ > 20h. These waves are almost barotropic; that is,
horizontal flow under a wave is uniform with depth, and attain a phase speed of:

clong =
√

gh (3.8)

Shallow-water waves are almost hydrostatic, which implies ∂ P/∂z = 0 in
Eq. 3.3. Accordingly, horizontal pressure gradients imposed by a tilted sea surface
do not vary with depth for such waves. This hydrostatic assumption is the basis of
the shallow-water layer models employed in Kämpf (2009).

Nonhydrostatic effects lead to a second breed of gravity waves, called deep-water
waves or short waves. Short waves can be classified by λ < 2h and attain a phase
speed of:

cshort =
√

g
λ

2π
(3.9)

In contrast to shallow-water waves, deep-water waves are dispersive; that is,
waves of greater wavelength propagate at a faster speed. An example of deep-water
waves are wind-generated waves in the open ocean.

Fig. 3.4 Phase speed of surface gravity waves (solid lines) versus total water depth h for various
wavelengths λ. Dashed lines show values for λ = 20h and λ = 2h
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The folder “Miscellaneous/Dispersion Relation Calculator” on the book’s ftp site
contains a SciLab script with which the reader can compute either phase speed or
period of surface gravity waves from user-specified values of total water depth and
wavelength.

3.3.3 Orbital Motions of Water Particles and Wave Pressure

Orbital motions of water parcels under a pure sine wave are described by the equa-
tions (e.g. Pond and Pickard, 1983):

u = 2π
ηo

T
exp

(
−2π

z∗

λ

)
sin

(
2π

x

λ
− 2π

t

T

)
(3.10)

w = 2π
ηo

T
exp

(
−2π

z∗

λ

)
cos

(
2π

x

λ
− 2π

t

T

)
(3.11)

where z∗ is (positive) distance from the sea surface. The pressure field that drives
these motions is given by:

P = ρog ηo exp

(
−2π

z∗

λ

)
sin

(
2π

x

λ
− 2π

t

T

)
(3.12)

which is consistent with Eq. (3.5).
For deep-water waves, water particles move in circular orbits with a radius of

orbits decreasing rapidly (exponentially) with depth. At a depth z∗ = λ, for instance,
the orbit’s radius is only 0.2% of that at the surface. This implies that such waves
attain vanishingly small orbital speeds near the seafloor.

Orbital motion in shallow-water waves are elliptical near the sea surface and hor-
izontal (simply back and forth) at the sea bottom. Shallow-water waves, if energetic
enough, are capable of eroding sediment from the sea floor.

3.4 Nonhydrostatic Solver

3.4.1 Splitting Pressure into Parts

For convenience, dynamic pressure P is split into two parts:

P = p + q (3.13)

where (lower-case) p refers to the hydrostatic pressure field with reference to
an undisturbed (horizontal) sea level, and q includes pressure components both
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imposed by a tilted sea surface and arising from nonhydrostatic effects. For a
constant-density ocean, the latter equation turns into P = q.

3.4.2 Starting as Simple as Possible

The focus is now placed on Eqs. (3.3, 3.4, and 3.5) that govern the dynamics of sur-
face gravity waves. Eqs. (3.4) and (3.5) can be combined into a prognostic equation
for the surface value of dynamic pressure qs :

∂qs

∂t
= −ρog

∂(h 〈u〉)
∂x

(3.14)

Accordingly, the complete set of equations governing the dynamics of linear sur-
face gravity waves in an ocean uniform in density is given by:

∂u

∂t
= − 1

ρo

∂q

∂x
(3.15)

∂w

∂t
= − 1

ρo

∂q

∂z
(3.16)

∂u

∂x
+ ∂w

∂z
= 0 (3.17)

∂qs

∂t
= −ρog

∂(h 〈u〉)
∂x

(3.18)

The result are four coupled partial differential equations with four unknowns.
The equations describe the dynamics of both short and long surface gravity waves.
Unfortunately, these equations cannot be solved in a straight-forward explicit man-
ner, because dynamic pressure appears implicitly on the right-hand side of the
momentum equations.

3.4.3 Finite-Difference Scheme

The pressure part q is decomposed into contributions from the current time level (n)
plus pressure corrections considering the next time level (n +1). This can be written
as:

q ⇒ qn + Δqn+1 (3.19)

Accordingly, the numerical solver of Eqs. (3.15, 3.16, 3.17, and 3.18) can be
formulated in two separate steps. In the first step, a first-guess velocity is calcu-
lated explicitly from values known at time level n. In the second step, the pressure
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correction Δq is calculated implicitly from the requirement that the new velocity
field has to be free of divergence according to Eq. (3.17). The first guess of velocity
is hereby calculated from the time-forward scheme:

u∗
i,k = un

i,k − Δt

ρoΔx
(qn

i,k+1 − qn
i,k) (3.20)

w∗
i,k = wn

i,k − Δt

ρoΔz
(qn

i−1,k − qn
i,k) (3.21)

where i and k are the cell references for the Arakawa C-grid (see Fig. 3.3). Conse-
quently, the finite-difference form of the momentum equations can be written as:

un+1
i,k = u∗

i,k − Δt

ρoΔx

(
Δqn+1

i,k+1 − Δqn+1
i,k

)
(3.22)

wn+1
i,k = w∗

i,k − Δt

ρoΔz

(
Δqn+1

i−1,k − Δqn+1
i,k

)
(3.23)

Insertion of the latter equations in the continuity equation (Eq. 3.17) and multi-
plication with the product ΔzΔx gives:

aeΔqn+1
i,k+1 + awΔqn+1

i,k−1 + atΔqn+1
i−1,k + abΔqn+1

i+1,k − aoΔqn+1
i,k = q∗

i,k (3.24)

This equation is mathematically called a Poisson equation (Poisson, 1813). The
coefficients for uniform grid spacings are given by:

ae = Δz/Δx , aw = Δz/Δx , at = Δx/Δz , ab = Δx/Δz

and

ao = ae + aw + at + ab

Figure 3.5 shows the locations of these coefficients in the Arakawa C-grid. The
source term on the right-hand side of Eq. (3.24) contains the divergence of the first
guess of the velocity field (u∗, w∗) and is given by:

q∗
i,k = ρo

Δt

[(
u∗

i,k − u∗
i,k−1

)
Δz + (

w∗
i,k − w∗

i+1,k

)
Δx

]
(3.25)

Once a solution of Eq. (3.24) is found, which implies that the new velocity field
is free of divergence, the new pressure field is given by:

qn+1 = qn + Δqn+1 (3.26)
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Fig. 3.5 Location used to define the coefficients at , ab, ae, and aw . The pressure part q and the
pressure correction Δq are calculated at the same grid points

3.4.4 The S.O.R. Method

The pressure equation (Eq. 3.24) can be solved by an iterative method called
Successive Over-Relaxation (or S.O.R in short) that can be formulated as:

Δqr+1
i,k = (1 − ω) Δqr

i,k − ω

ao
q∗

i,k +

+ ω

ao

(
aeΔq�

i,k+1 + awΔq�
i,k−1 + atΔq�

i−1,k + abΔq�
i+1,k

)
(3.27)

where r = 0, 1, 2, · · · is the iteration index, the superscript � is given by either
� = r + 1 or � = r dependent on whether an update of Δq already exists, and the
parameter ω determines the degree of over-relaxation. Typical values are in a range
between 1.2 and 1.4.

Start values of Δq for the S.O.R. iteration can be set to zero, but the iteration is
often faster if we use the values of the previous time step instead; that is,

Δqr=0
i,k = Δqn

i,k

The surface boundary value for dynamic pressure needs to be given at every step
of the S.O.R. iteration. How this is done is described in the following. First, velocity
components are updated within the S.O.R. iteration with:

ur+1
i,k = u∗

i,k − Δt

ρoΔx

(
Δqr+1

i,k+1 − Δqr+1
i,k

)
(3.28)

wr+1
i,k = w∗

i,k − Δt

ρoΔz

(
Δqr+1

i−1,k − Δqr+1
i,k

)
(3.29)
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The vertically integrated horizontal velocity can then be calculated from:

ur+1
sum,k =

∑
i

(ur+1
i,k Δz) (3.30)

Slight variations of the thickness of the water column owing to sea-level eleva-
tions are ignored here. Finally, the surface value of dynamic pressure can be adjusted
via:

Δqr+1
0,k = qr+1

0,k − qn
0,k = −dt/Δx

(
ur+1

sum,k − ur+1
sum,k−1

)
(3.31)

The S.O.R. iteration is repeated until the solution has converged to an almost
steady value; that is,

∣∣Δqr+1
i,k − Δqr

i,k

∣∣ < ε (3.32)

where ε is a user-specified value of pressure accuracy. From Eq. (3.27), this conver-
gence implies that:

aoΔqr+1
i,k ≈ −q∗

i,k + (
aeΔqr+1

i,k+1 + awΔqr+1
i,k−1 + atΔqr+1

i−1,k + abΔqr+1
i+1,k

)
(3.33)

which (approximately) reproduces the original Poisson equation (Eq. 3.24). Even-
tually, the S.O.R. method gives values of variables at the next time level (n+1):

qn+1
i,k = qn

i,k + Δqr+1
i,k

un+1
i,k = ur+1

i,k

wn+1
i,k = wr+1

i,k

where the values with superscript r +1 are the result of the S.O.R. iteration. The
flow chart in Fig. 3.6 summarises the steps that make up the S.O.R. scheme.

Surface boundary conditions are already implemented in this scheme. Boundary
conditions for q at solid boundaries remain to be specified. Disappearance of vertical
speed at horizontal solid surfaces implies that ∂q/∂z = 0, which follows from the
vertical momentum equation of Eq. (3.3). This can be implemented by setting the
coefficient ab in Eq. (3.24) to zero at such boundaries. Vertical solid boundaries are
treated analogously.

The choice of the value for ε has implications for the accuracy of the dynam-
ics predicted. To obtain a measure of this accuracy, we can convert the pressure
accuracy ε into an equivalent sea-level anomaly; that is,

ε ≈ Δq ≈ ρogΔη or Δη ≈ ε

gρo
(3.34)

With a choice of ε = 0.001 Pa, for instance, the accuracy in terms of sea-
level anomalies is Δη < 10−5 cm. This relatively high accuracy, however, can
come at a cost of >500 iterations of the S.O.R. scheme for each time step of the
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Fig. 3.6 Flow chart of the S.O.R. method

simulation. This can be rather time consuming, particularly for three-dimensional
model applications.

3.4.5 Boundary Conditions for Variable Bathymetry

Variable bathymetry requires flow normal to a solid boundary to vanish. To this end,
a logical array is used as to indicate whether a grid cell is “dry” or “wet”. Horizontal
and vertical velocity components are kept at zero values in dry grid cells during a
simulation.

Owing to the staggered nature of the Arakawa-C grid (see Fig. 3.3), additional
conditions are required to make sure the absence of flow across solid boundaries.
This is achieved by setting horizontal velocity to zero value if the adjacent grid cell
with index (k + 1) is dry and by setting vertical velocity to zero if the overlying grid
cell of index (i −1) is dry. Lateral flooding of coasts is not implemented here.

3.4.6 Stability Criterion

The stability criterion for the finite-difference versions of Eqs. (3.15, 3.16, 3.17, and
3.18) is given by:

Δt ≤ Δx√
ghmax

(3.35)
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where hmax is the maximum total water depth encountered in the model domain.
This is known as Courant-Friedrichs-Lewy condition or CFL condition for surface
gravity waves (Courant et al., 1928).

3.5 Exercise 3: Short Surface Gravity Waves

3.5.1 Aim

The aim of this exercise is to simulate the progression of short surface gravity waves
in an ocean uniform in density.

3.5.2 Task Description

The task is to construct a FORTRAN 95 simulation code based on the nonhy-
drostatic finite-difference equations outlined in the previous section. Consider a
channel, 500 m in length and 100 m deep, resolved by grid spacings of Δx = 5 m
and Δz = 2 m. Both ends of the channel are closed. Zero-gradient conditions for
dynamic pressure are applied at these boundaries. These boundary conditions imply
that pressure surfaces intersect the boundary at a right angle, which is consistent
with the condition of vanishing normal flow.

Forcing consists of oscillatory sea level variations of 1 m in amplitude on a period
of 8 s, prescribed near the left boundary. According to the dispersion relation of short
waves, given by Eq. (3.9), the expected wave length for a given period is:

λ = g

2π
T 2

A forcing period of T = 8 s gives λ ≈ 100 m. Smart readers might complain that
the resultant gravity wave is rather in the transition regime than a pure deep-water
wave. Nevertheless, Eq. (3.12) suggests that the amplitude of pressure fluctuations
at a depth of 100 m are only 4% compared with that at the surface. Pressure fluc-
tuations are therefore expected to decrease rapidly with depth being the sole effect
of nonhydrostatic dynamics. A time step of Δt = 0.05 s is chosen for adequate
resolution of the forcing period. The total simulation time is 100 secs with data
outputs at every second of the simulation. The author used ω = 1.4 together with a
pressure accuracy of ε = 0.001 Pa. The reader is encouraged to vary these values.

3.5.3 Results

The predicted wave pattern attains a wavelength of approximately 100 m, which is in
excellent agreement with theory (Fig. 3.7). Pressure fluctuations decrease markedly
with depth and vanish near the sea floor. Figure 3.7 gives the erroneous impression
we are dealing with a multi-layer model. In fact, dynamic pressure is calculated
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Fig. 3.7 Exercise 3. Horizontal distribution of dynamic pressure (contours), expressed by equiv-
alent sea-level elevations (q/(ρog)), for the upper 20 levels of the water column after 100 secs of
simulation. Elevations are magnified by a factor of 5. The top line shows the sea surface

Fig. 3.8 Exercise 3. Dynamic
pressure field, divided by
ρog, in units of metres after
80 secs of simulation. Lines
are contours drawn at an
interval of 0.1 m. Only the
top 50 m of the water column
is shown

here at fixed vertical levels and the true distribution of dynamic pressure is shown
in Fig. 3.8.

Theory (Eq. 3.12) suggests that the amplitude of pressure anomalies under a shot
surface gravity wave decreases with depth according to:

q(z∗) = qs exp

(
−2π

z∗

λ

)
(3.36)

Figure 3.9 shows an excellent agreement between prediction and theory.

3.5.4 Additional Exercise for the Reader

The reader is encouraged to experiment with different forcing periods and/or total
water depths and to compare the predicted wavelength of the wave with theory. Note
that the dispersion relation for long waves (Eq. 3.8) gives the relationship:

λ =
√

ghT
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Fig. 3.9 Exercise 3. Ensemble of vertical profiles (thin lines) of dynamic pressure, divided by ρog,
taken from the entire model domain after 100 secs of iteration. The thick line shows the theoretical
result of maximum pressure values according to Eq. (3.12)

Total water depth can be changed by variation of either vertical grid spacing or
the total number of vertical levels nz in the declaration section. The author recom-
mends the second option knowing that a coarser vertical resolution can act as a filter
biasing the true dynamics of the process.

3.5.5 Implementation of Variable Bottom Topography

The aim is to test the vertical ocean-slice model for variable bottom topography,
such as that shown in Fig. 3.10. To this end, two logical pointer arrays are declared
as to indicate whether a grid cell is “dry” or “wet”. Pointer values are specified at
pressure grid points.

Zero-gradient conditions for dynamic pressure need to be implemented at all
solid surfaces. This is done implicitly by setting the respective coefficients in
the Poisson equation (Eq. 3.27) to zero and by performing the S.O.R. iteration
exclusively in wet grid cells. Note that calculation of new velocity components is
restricted to wet grid points excluding those defining a solid surface (see Fig. 3.3).
The folder “Miscellaneous/Exercise 3 Variation” on the book’s ftp site contains the
modified model code.

Fig. 3.10 A simple bathymetry for tests of the vertical ocean-slice model
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3.5.6 Results

Figure 3.11 demonstrates that the model can also successfully cope with variable
bottom topography. As the deep-water wave approaches shallower water, it turns
into a shallow-water wave (because the ratio between wavelength and water depth
decreases). In this region, the wave “feels” the bottom and it becomes subject to
some deformation; that is, its phase speed and wavelength change in vicinity of
the riff. As the wave approaches deeper water in the lee of the riff, it becomes
transformed back into a deep-water wave and continues its propagation largely inde-
pendent of total water depth. Note that flooding of dry land areas, such as an isolated
island, is not possible with this model version.

Fig. 3.11 Same as Fig. 3.7, but with variable bottom topography and after 88 secs of simulation

3.6 Inclusion of Variable Density

3.6.1 The Governing Equations

Density effects can be included in the vertical ocean-slice model by adding (a) an
advection-diffusion equation for density and (b) the reduced-gravity force in the
vertical momentum equation. The governing equations can then be written as:

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= − 1

ρo

∂ P

∂x

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= − 1

ρo

∂ P

∂z
− (ρ − ρo)

ρo
g

∂ρ

∂t
+ u

∂ρ

∂x
+ w

∂ρ

∂z
= ∂

∂x

(
Kh

∂ρ

∂x

)
+ ∂

∂z

(
Kz

∂ρ

∂z

)
(3.37)

∂u

∂x
+ ∂w

∂z
= 0

∂ Ps

∂t
= −ρog

∂(h 〈u〉)
∂x
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Note that, for convenience, the author has also included the nonlinear terms in
the momentum equations. By splitting pressure into parts according to Eq. (3.13),
these equations take the form:

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= − 1

ρo

∂(p + q)

∂x

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= − 1

ρo

∂q

∂z

∂ρ

∂t
+ u

∂ρ

∂x
+ w

∂ρ

∂z
= ∂

∂x

(
Kh

∂ρ

∂x

)
+ ∂

∂z

(
Kz

∂ρ

∂z

)
(3.38)

∂u

∂x
+ ∂w

∂z
= 0

∂qs

∂t
= −ρog

∂(h 〈u〉)
∂x

The pressure term p refers to the hydrostatic dynamic pressure with reference to
an undisturbed sea level and is given by:

∂p

∂z
= − (ρ − ρo)

ρo
g (3.39)

with p = 0 at the sea surface. This ignores effects due to atmospheric pressure vari-
ations, which usually can be neglected. Notice that the reduced-gravity force (often
symbolised in short as g′) has disappeared from the vertical momentum equation,
but, in fact, this force has been shifted into the hydrostatic pressure part and density
effects appear now in the horizontal momentum equations.

3.6.2 Discretisation of the Advection Terms

The advection equation for a variable B subject to flow with components u and w

in the vertical ocean slice is given by:

∂ B

∂t
= −u

∂ B

∂x
− w

∂ B

∂z
(3.40)

Using the product rule of differentiation, this equation can be reformulated as:

∂ B

∂t
= −∂(u B)

∂x
− ∂(wB)

∂z
+ B

(
∂u

∂x
+ ∂w

∂z

)
(3.41)

where the last term vanishes with insertion of the continuity equation (Eq. 3.17).
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The temporal change of B can be discretised using a simple time-forward iter-
ation. The treatment of the remaining term is described in the following for the
x-direction. Analog recipes apply for the z-direction. The general approach is to
consider a control volume (Fig. 3.12) and to express fluxes of B through the faces
of this control volume as:

− Δt
∂(u B)

∂x
= Cw Bw − Ce Be (3.42)

where the indices “w” and “e” refer to east and west faces of the control volume, and
the C parameters are so-called Courant numbers. For variables located at pressure
grid points (see Fig. 3.3), for instance, the Courant numbers are given by:

Cw = un
k−1Δt/Δx and Ce = un

kΔt/Δx

In a next step, u is split into positive and negative components:

u+ = 0.5(u + |u|) and u− = 0.5(u − |u|)

so that Eq. (3.42) can be rewritten as:

−Δt
∂(u B)

∂x
= C+

w B+
w + C−

w B−
w − C+

e B+
e − C−

e B−
e

On the basis of Total Variation Diminishing (TVD) advection schemes (see
Fringer et al., 2005), the face values of B are computed with the upstream values

Fig. 3.12 The control volume
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plus the addition of a higher-order term according to:

B+
e = Bn

k + 0.5Ψ
(
r+

k

) (
1 − C+

e

) (
Bn

k+1 − Bn
k

)
B−

e = Bn
k+1 − 0.5Ψ

(
r−

k

) (
1 + C−

e

) (
Bn

k+1 − Bn
k

)
B+

w = Bn
k−1 + 0.5Ψ

(
r+

k−1

) (
1 − C+

w

) (
Bn

k − Bn
k−1

)
B−

w = Bn
k − 0.5Ψ

(
r−

k−1

) (
1 + C−

w

) (
Bn

k − Bn
k−1

)

where the r parameters are defined by:

r+
k = Bn

k − Bn
k−1

Bn
k+1 − Bn

k

and r−
k = Bn

k+2 − Bn
k+1

Bn
k+1 − Bn

k

Here, we use the so-called Superbee scheme in which the limiting function Ψ is
defined by:

Ψ(r ) = max {0, min(2r, 1), min(r, 2)}
Kämpf (2009) shows performance tests of other limiting functions. Vertical

advection is discretised via fluxes of B through vertical faces of the control volume
in a similar fashion (not shown here). The last term in (3.41), although it should
be zero in theory, is included in this scheme to avoid accumulation of small but
persistent round-off errors that could lead to artificial and unwanted internal sources
or sinks of B.

3.6.3 Stability Criterion for the Advection Equation

The stability criterion for the above explicit form of the advection equation is
given by:

Δt ≤ min

(
Δx

u
,
Δz

w

)
(3.43)

known as Courant-Friedrichs-Lewy condition or CFL condition for explicit advec-
tion schemes (Courant et al., 1928).

3.6.4 Implementation of Density Diffusion

For uniform grid spacings, the explicit finite-difference versions of the density dif-
fusion terms in Eq. (3.38) are given by:

∂

∂x

(
Kh

∂ρ

∂x

)
= [

K e
h

(
ρi,k+1 − ρi,k

) − K w
h

(
ρi,k − ρi,k−1

)]
/ (Δx)2

∂

∂z

(
Kz

∂ρ

∂z

)
= [

K +
z

(
ρi−1,k − ρi,k

) − K −
z

(
ρi,k − ρi+1,k

)]
/ (Δz)2
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where the interpolated values of eddy diffusivity are given by:

K e
h = 0.5

(
Kh,i,k + Kh,i,k+1

)
and K w

h = 0.5
(
Kh,i,k + Kh,i,k−1

)
K +

z = 0.5
(
Kz,i,k + Kz,i−1,k

)
and K −

z = 0.5
(
Kz,i,k + Kz,i+1,k

)

Figure 3.13 shows the locations at which these values are determined. Vanishing
diffusive fluxes across solid boundaries require the use of zero-gradient conditions
for density.

Fig. 3.13 Arakawa-C grid.
Eddy viscosity is calculated
at grid points where also
pressure, density and other
scalars are calculated. The
gray square indicates a
selected grid cell

3.6.5 Required Modifications of the Code

Several additions to the previous FORTRAN 95 simulation code are required to
include effects associated with variable density. These are:

• Addition of an advection-diffusion equation for density including boundary con-
ditions,

• Calculation of the baroclinic pressure term p from the density distribution.

As the reader might have noticed, dynamic pressure is now composed of three
parts:

P ⇒ pn + qn + Δqn+1 (3.44)

where p is diagnosed from:

pn
i,k = pn

i−1,k + (〈ρn〉 − ρo)gΔz for i = 1, 2, 3, · · · , nz

with pn
0,k = 0. Density ρ is hereby interpolated to represent values centred between

vertically neighboring pressure grid points. This interpolated value is given by:

〈ρn〉 = 0.5(ρn
i−1,k + ρn

i,k)
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With inclusion of the nonlinear terms (required for subsequent exercises), the
first-guess value of velocity is now calculated from:

u∗
i,k = un

i,k − ΔtAdv(u) − Δt

ρoΔx
(pn

i,k+1 − pn
i,k + qn

i,k+1 − qn
i,k) (3.45)

w∗
i,k = wn

i,k − ΔtAdv(w) − Δt

ρoΔz
(pn

i−1,k − pn
i,k + qn

i−1,k − qn
i,k) (3.46)

where Adv(u) and Adv(w) represent the nonlinear terms.

3.7 Exercise 4: Density-Driven Flows

3.7.1 Aim

The aim of this exercise is to apply the vertical ocean-slice model in a study of
bottom-arrested density-driven flows over variable bottom topography.

3.7.2 Task Description

Consider a closed channel, 500 m long and 100 m deep, resolved by grid spacings
of Δx = 5 m and Δz = 2 m. This configuration is the same as in Exercise 3. The
model is forced via prescription of a layer of dense water that initially leans against
the left boundary, as shown in Fig. 3.14. This layer is initially 100 m thick and 50 m
wide. Its density is 1 kg/m3 greater compared with ambient water having a density
of ρo = 1,028 kg/m3. Owing to initially unbalanced lateral pressure gradients, this
layer will spread along the sea floor with the aim to achieve a final state at rest void
of any horizontal density gradients.

Horizontal and vertical density diffusivities are set to small uniform values of
Kh = Kz = 1 × 10−4 m2/s. The total simulation time is 50 min with data outputs
every 30 secs. The author used a time step of Δt = 0.1 s, which satisfies the CFL

Fig. 3.14 Initial density field for Exercise 4
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criteria for both external gravity waves (Eq. 3.35) and advection (Eq. 3.43). Param-
eters of the S.O.R. scheme are kept at the same values as in the previous exercise.

3.7.3 Theory

Baroclinic pressure gradients associated with horizontal density differences will
produce a bottom-arrested density-driven flow. The resultant speed of the flow can
be estimated from energy conservation principles. In this process, potential energy
available from the initial density field is converted into kinetic energy of the flow.
This energy conversion can be quantified by the Bernoulli equation. Provided that
the plume density does not change, the Bernoulli equation reads:

0.5u2 + g′h = g′ho (3.47)

where g′ is reduced gravity, and ho and h, respectively, are initial and final plume
thicknesses. The Bernoulli equation is named after Daniel Bernoulli (Bernoulli,
1738) and his father Johann. The first true Bernoulli equation, however, was derived
by Euler (1755). The latter equation can be rewritten as:

u =
√

2g′(ho − h) (3.48)

3.7.4 Results

As anticipated, the initial density anomaly produces a density-driven flow spreading
toward the right-hand side of the model domain (Fig. 3.15). This flow forms an
isolated plume head. Counter-clockwise vortices forming in the lee of this head
induce vigorous mixing.

With g′ = 0.0095 m s−2, ho = 100 m, and h ≈ 40 m, the Bernoulli equation
(Eq. 3.48) suggests a plume speed of u = 1.1 m/s. In good agreement with theory,
maximum speeds of the simulated plume vary by ±0.2 m/s around this value.

It should be highlighted that the model appears capable of simulating turbulence
initiated by vertical shear of the horizontal flow and the breaking of internal waves.
Exercise 6 will explore this feature in greater detail.

3.7.5 Can Reduced-Gravity Plumes Jump?

The author decided to repeat the latter experiment with inclusion of variable bottom
topography with a ramp and a vertical bar (Fig. 3.16). Will the reduced-gravity
plume make it over these obstacles?

Results show that the density-driven current is energetic enough to pass the ramp.
It shoots upward as it meets the vertical bar where it forms a counter-rotating vortex
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Fig. 3.15 Exercise 4: Snapshots of the density distribution (shading and contours) at selected times
of the simulation

Fig. 3.16 Variation of Exercise 4. Initial density field and bathymetry

pair, sometimes called a “mushroom” (Fig. 3.17). Notice that a fraction of dense
water flows back downward on the ramp.

Surely, neither the initial density distribution nor our bottom topography can be
found in nature, but it is fun to create such fictional scenarios, isn’t it? When I
showed the GIF animation of the results in the classroom, students asked whether
I believed these results were realistic. Well, we really can’t tell without any means
of comparison with the real situation, can we? Nevertheless, the author is confident
that laboratory-based experiments would show similar results.



3.7 Exercise 4: Density-Driven Flows 43

Fig. 3.17 Variation of
Exercise 4: Snapshots of
density distribution at
selected times of the
simulation

3.7.6 Additional Exercise for the Reader

Repeat this exercise, but make the forcing layer lighter compared with the ambient
fluid. Can you guess what happens? Are you curious? The reader is also encouraged
to run the model with use of the rigid-lid approximation being described in the
following.

3.7.7 The Rigid-Lid Approximation

Inclusion of a free sea surface requires the choice of fairly small time steps to satisfy
the CFL criterion associated with propagation of surface gravity waves (Eq. 3.35).
Longer time steps are possible under the assumption that vertical velocity vanishes
at the sea surface; that is, ws = 0. This assumption can be called rigid-lid approxi-
mation for nonhydrostatic models. It eliminates surface gravity waves and is easily
implemented in the code by setting the vertical velocity at the surface to zero via the
logical wet/dry pointer array.

With use of the rigid-lid approximation, the completion time of the previous
exercise can be reduced fivefold via choice of a larger time step of Δt = 1 s without
major changes in the results. Nevertheless, the rigid-lid approximation might not
work in other model applications and, therefore, it should not be the first choice.
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3.8 Internal Waves

3.8.1 Theory

The density field in a fluid can be expressed by a constant part, a time-independent
depth-variable part, and fluctuations according to:

ρ = ρo + ρ(z) + ρ ′(x, z, t) (3.49)

Analytical solutions of the Navier-Stokes equations uncovering internal grav-
ity waves can be derived under the assumption that density fluctuations are small
compared with the depth-variable part; that is,

∣∣ρ ′∣∣ << |ρ| with both parts being
small compared with mean density ρo. Under this condition, which is a modified
Boussinesq approximation, the Navier-Stokes equations for a vertical ocean slice
can be approximated by (Cushman-Roisin, 1994):

∂u

∂t
= − 1

ρo

∂ P

∂x
(3.50)

∂w

∂t
= − 1

ρo

∂ P

∂z
− ρ ′

ρo
g (3.51)

∂u

∂x
+ ∂w

∂z
= 0 (3.52)

∂ρ

∂t
+ w

∂ρ

∂z
= 0 (3.53)

where higher-order terms associated with diffusion and advection are ignored. In
the following we also assume that ρ(z) varies linearly with depth corresponding to
a constant stability frequency: N 2 = −g/ρo∂ρ/∂z.

In a first consideration, the existence of a sea surface is ignored, assuming an
ocean of infinite vertical extent. For sinusoidal linear waves that are allowed to travel
into any direction of the vertical ocean slice, it can be shown that the frequency of
the wave σ obeys the dispersion relation (e.g. Cushman-Roisin, 1994):

σ = 2π

T
= ±N cos θ

where T is wave period and θ is the angle between the direction of wave propagation
and the horizontal plane (Fig. 3.18). Hence, the minimum period an internal wave
in an ocean of continuous density stratification can attain is:

Tmin = 2π

N
(3.54)
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which implies purely horizontal propagation. This corresponds to the period of
oscillations experienced by a buoyant object in a stratified fluid (see Sect. 3.10 of
Kämpf (2009)). Consequently, such internal waves propagate at a phase speed of:

c = λ

T
= ±λN cos (θ )

2π

where λ is the wavelength. The fact that two signs are allowed indicates that the
wave can travel into one of two directions (see Fig. 3.18). If the frequency of an
internal wave is imposed via external forcing, regardless of wavelength, all waves
propagate at a certain fixed angle from the horizontal. The longer the period the
steeper the direction.

Fig. 3.18 Vertical structure of an internal wave. Adapted from Cushman-Roisin (1994)

3.8.2 Normal Wave Modes

In the ocean interior, internal wave motion can induce large vertical excursions of
density interfaces of several tens of metres. Vertical boundaries (sea surface and
sea floor) do not permit such large-amplitude vertical oscillations. Consequently,
vertical velocity inherent with internal waves has to vanish at the sea floor and it
has to become very small at the sea surface. Since the resultant waves can only
propagate horizontally, the vertical boundaries operate as a waveguide.

Only a discrete set of wave solutions, so-called normal modes, satisfies the
conditions of vanishing vertical velocity at vertical boundaries. It can be shown
that, for a constant stability frequency N , possible wave frequencies are (Pond and
Pickard, 1983):

σ = ± N√
1 + (0.5nλ/h)2

where n = 1, 2, 3, · · · is the mode number, λ is horizontal wavelength, and h is
total water depth.
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Figure 3.19 displays the vertical structure of horizontal and vertical velocity com-
ponents of the first three internal wave modes. The mode number n gives the number
of maxima of the vertical velocity profile and the number of nodes (zero crossings)
of the horizontal speed profile. Phase speeds associated with individual wave modes
are given by:

c = λ

T
= ± N√

(2π/λ)2 + (nπ/h)2
(3.55)

Fig. 3.19 Vertical structure of (a) vertical and (b) horizontal velocity components for the first three
normal modes of internal waves with N = constant. Adapted from Pond and Pickard (1983)

3.9 Exercise 5: Internal Waves

3.9.1 Aim

The aim of this exercise is to simulate the dynamics of internal waves in a finite-
depth ocean of continuous density stratification on the basis of Eqs. (3.38).

3.9.2 Task Description

Consider a model domain of 500 m in length and 100 m in depth, resolved by grid
spacings of Δx = 5 m and Δz = 2 m. Both lateral boundaries are closed. To make
the dynamics slightly more complex, the author decided to add a shallower region
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Fig. 3.20 Initial density distribution (shading and contours) and bathymetry for Exercise 5

near the left boundary (Fig. 3.20). The ambient ocean is initially at rest and linearly
stratified characterised by a stability frequency of N = 0.1 s−1. Surface density
is set to ρs = 1,028 kg/m3. The minimum period of internal waves according to
Eq. (3.54) is about 63 s. Such a strong density stratification does rarely exist in
the ocean. The sole purpose here is to minimise the total simulation time whilst
capturing about 10 wave periods.

An initial density disturbance is added in the centre of the model domain over
a width of 25 m (five adjacent grid cells). Density is increased by 20 kg/m3 in the
water column in this region, but the maximum density is limited by the bottom den-
sity found in ambient water. The purpose of this treatment is to prevent creation of a
density-driven bottom-arrested flow which already has been studied in the previous
exercise.

Horizontal and vertical density diffusivities are set to small uniform values of
Kh = Kz = 1 × 10−4 m2/s. The rigid-lid version of the nonhydrostatic vertical
ocean-slice model is applied with a time step of Δt = 1 s and a pressure accuracy
of ε = 0.01 Pa. The simulation time is 10 mins with data outputs every 10 secs.

3.9.3 Results

Owing to reflection at closed boundaries, wave disturbances in closed domains trig-
ger the formation of standing waves. Standing waves are waves of zero horizontal
propagation that, at certain locations called nodes, exhibit no vertical displacements.
Exclusively vertical displacements are found between nodes and near lateral bound-
aries. The initial density disturbance creates an internal wave pattern that becomes
reflected at the closed lateral boundaries (Fig. 3.21). At times, internal waves break
and induce vertical mixing. Reflection at closed boundaries gives rise to a complex
wave pattern. Vertical profiles of vertical velocity (Fig. 3.22) reveal wave shapes of
one or two maxima in the water column corresponding to mode numbers n = 1
and n = 2 (see Fig. 3.19), demonstrating that the vertical boundaries of fluids
operate as a waveguide. Notice that the vertical speed of wave motions exceeds
40 cm/s.
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Fig. 3.21 Exercise 5. Density distribution after of 2.8 min of simulation

Fig. 3.22 Exercise 5. Ensemble of vertical profiles of vertical velocity after 6 min of iteration for
the zones (a) x = 50–100 m, (b) x = 350–400 m, and (c) x = 400–450 m

3.9.4 Additional Exercise for the Reader

Place the initial density anomaly in the shallower region and explore the resultant
wave patterns.

3.10 Mechanical Turbulence

3.10.1 Kelvin-Helmholtz Instability

Shear flows are flows of a speed that varies in a direction perpendicular to the cur-
rent. This can be either in the horizontal plane where the resultant flows are referred
to as horizontal shear flows and/or in the vertical plane characterising vertical shear
flows. The latter are considered in the following. Vertical shear flows tend to create
turbulence inducing mixing in the water column. In a stratified fluid, work has to



3.10 Mechanical Turbulence 49

Fig. 3.23 Mixing of a two-layer stratified fluid with flow shear. Adapted from Cushman-
Roisin (1994)

be performed to raise heavier fluid parcels and to lower lighter fluid parcels against
the reduced-gravity force. Hence, density stratification generally operates to lower
turbulence levels.

Let us consider a simplified system pictured in Fig. 3.23. Initially, there are
two superimposed layers of different densities in a stable stratification (lighter
water on top of heavier water). Each layer is in motion at a certain uniform
speed, but there is a strong velocity shear across the density interface. With equal
layer thicknesses, energy conservation suggests that complete mixing occurs for
(Cushman-Roisin, 1994):

(ρ2 − ρ1) gH

ρo (U2 − U1)2 < 1

where ρo ≈ ρ1 ≈ ρ2 is a mean density, using the Boussinesq approximation.
Localised mixing in vicinity of the density interface, however, is possible, if the
wavelength of a perturbation λ is such that (Kundu, 1990):

π (ρ2 − ρ1) g

ρo (U2 − U1)2 λ < 1 or λ <
ρo

|Δρ|
(Δu)2

πg
(3.56)

We can therefore anticipate that there are always sufficiently short waves to create
instability. Therefore, a two-layer shear flow is always unstable. This is known as
the Kelvin-Helmholtz instability, first described by Thomson (Lord Kelvin) (1871)
and Helmholtz (1868). Incidentally, this mechanism explains the generation of water
waves by surface winds.

3.10.2 Instability of a Stratified Shear Flow

Analytical solutions of the shear-flow problem can be derived under the assumptions
that both the horizontal flow and density vary gradually with depth. The dynamics
of this problem in a vertical ocean slice slice can be approximated by the set of
equations:
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∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= − 1

ρo

∂ P

∂x
(3.57)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= − 1

ρo

∂ P

∂z
− ρ ′

ρo
g (3.58)

∂ρ

∂t
+ u

∂ρ

∂x
+ w

∂ρ

∂z
= 0 (3.59)

∂u

∂x
+ ∂w

∂z
= 0 (3.60)

where density diffusion and frictional effects are ignored, to zero-order approxima-
tion. Also, the existence of the sea surface is ignored, based on the assumption of
a fluid of infinite vertical extent. For a constant stability frequency N and an initial
horizontal flow of a speed that varies linearly with depth (∂u/∂z = constant), it can
then be shown that instability occurs locally, if the so-called Richardson number
falls below a threshold value of 1/4 (Richardson, 1920). The Richardson number is
hereby defined by:

Ri = N 2

(∂u/∂z)2
(3.61)

Accordingly, instability in a two-layer shear fluid, such as that depicted in
Fig. 3.23, can be expected to produce a final transition layer of thickness Δh with
Ri ≈ 0.25 throughout this layer. Using Eq. (3.61), the thickness of the resultant
transition layer can be estimated from the equation:

−g/ρoΔρ/Δh

(Δu/Δh)2 = 0.25 or Δh = 0.25
ρo

|Δρ|
(Δu)2

g
(3.62)

where Δρ and Δu, respectively, are differences in density and flow speed across this
layer. We will use the latter equation for verification of simulation results. Note that
the vertical scale from Eq. (3.62) is of the same order of magnitude as the horizontal
wavelength described by Eq. (3.56). Hence, horizontal and vertical length scales
of turbulent vortices inherent with the Kelvin-Helmholtz instability mechanism are
closely related to each other, which implies a nonhydrostatic nature of the dynamics
at play.

3.11 Exercise 6: Kelvin-Helmholtz Instability

3.11.1 Aim

The aim of this exercise is to simulate mixing at the density interface of a two-layer
vertical shear fluid.
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3.11.2 Task Description

Consider a vertical ocean slice of 500 m in length and 100 m in depth with cyclic
lateral boundaries (see below) and grid spacings of Δx = 5 m and Δz = 2 m.
The density interface of two superimposed layers of different densities is located
at a depth of 50 m. The density of the top layer is set to ρ1 = 1,027.0 kg/m3.
The bottom layer has a density of ρ2 = 1,029.0 kg/m3, yielding a density differ-
ence of Δρ = 2 kg/m3. Density diffusion is included in the model. Horizontal
and vertical density diffusivities are set to small uniform values of Kh = Kz = 1 ×
10−4 m2/s.

The initial lateral flow in the top layer has an average speed of 1 m/s, whereas
the lower layer is at rest. Randomly generated values of ±0.01 m/s are added to
the upper-layer flow. This technique promotes the initial growth of disturbances at
random locations. The random-number generator was taken from Press et al. (1989).
With a difference in layer speeds of Δu = 1 m/s, Eq. (3.62) suggests that the tran-
sition mixing zone attains a thickness of around 13 m. Equation (3.56) predicts that
mixing is initiated by disturbances of <18 m in wavelength. These length scales are
barely resolved with the grid spacings chosen. The reader is encouraged to use a
finer spatial resolution for more accurate results.

This task employs the rigid-lid version of the vertical ocean-slice model. The
total simulation time is 100 min with outputs every minute. The time step is set to
Δt = 1 s. The pressure accuracy for the S.O.R. iteration is set to ε = 1 × 10−3 Pa.
Will the model adequately simulate vertical mixing inherent with the Kelvin-
Helmholtz instability mechanism?

3.11.3 Cyclic Boundary Conditions

Cyclic boundary conditions mean that opposite lateral boundaries are connected
with each other, such that flow escaping through one boundary enters through the
opposite one. With our numerical grid, cyclic boundary conditions are implemented
with:

ψk=0 = ψk=nx

ψk=nx+1 = ψk=1

where ψ stands for any variable. The use of cyclic boundary conditions is justified
for dynamical disturbances of a wavelength much shorter than the length of the
model domain and occupying the entire model domain. Cyclic boundary conditions
correspond then to a model domain of infinite length. A rule of thumb is that the
model domain should extend at least ten wavelengths of disturbances. Otherwise,
some stretching bias will occur.
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3.11.4 Results

The flow becomes dynamically unstable owing to the Kelvin-Helmholtz insta-
bility mechanism after 45 min of simulation and creates vigorous internal wave
breaking at the density interface (Fig. 3.24). Disturbances attain vertical speeds of
> 30 cm/s. Equation (3.60) suggests that disturbances are confined to a layer of
about 13 m in thickness, such that Re ≈ 0.25 establishes in this layer. The sim-
ulation produces a transition zone of around 25 m in thickness, characterised by
a Richardson number of Ri ≈ 0.5 (Figs. 3.25 and 3.26). This discrepancy by a
factor of two is presumably caused by inertia effects followed by continued mix-
ing after onset of dynamical instabilities. Another source of bias could be the rela-
tively coarse grid spacing, which the reader may verify via the choice of finer grid
spacings.

Vortices involved in the instability process do neither fully mix density nor
momentum. The final result is rather a transition zone over which both density
and the horizontal flow vary approximately linearly. Hence, it is a misconception
to assume that the Kelvin-Helmholtz mechanism fully mixes portions of the fluid
column. In model applications that cannot resolve the Kelvin-Helmholtz instabil-
ity mechanism, this process is often parameterised by means of vertical turbulent
diffusion in which the coefficient is a function of the Richardson number.

Fig. 3.24 Exercise 6. The onset of Kelvin-Helmholtz instabilities after 50 min of simulation.
Shown are the density distribution (shading and contours) and the flow field (arrows, averaged
over 5 × 5 grid cells)

Fig. 3.25 Exercise 6. Same as Fig. 3.24, but after 100 min of simulation
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3.11.5 Additional Exercise for the Reader

Repeat this exercise with ρ1 = 1,027.5 kg/m3 and ρ2 = 1,028.5 kg/m3, which
halves the density contrast between the layers. Equation (3.61) suggests that the
thickness of the initial mixing regime will double in this situation. The reader is
encouraged to verify this.

Fig. 3.26 Exercise 6. Vertical
profiles of 1/Ri after (left
panel) 25 min and (left panel)
100 min of simulation.
Vertical profiles are computed
from horizontal averages of
density and lateral flow
speed. The value 1/Ri = 4
indicates the theoretical
transition between laminar
and turbulent flow

3.12 Lee Waves and the Froude Number

3.12.1 The Hydraulic Jump

Lee waves are created by flow past a topographic irregularity such as a mountain in
the atmosphere or a sill in the ocean. Resultant disturbances of density interfaces in
the lee of topographic obstacles are internal waves of a certain phase speed. Whether
disturbances can locally grow to great amplitudes depends on the phase speed of
internal waves in relation to the carrier speed of the ambient flow.

The ratio between speed of the incident flow and the phase speed of long gravity
waves is called the Froude number, introduced by William Froude (1874). For a
Froude number less than unity, wave disturbances can travel upstream against the
ambient flow, a situation referred to as subcritical. For a Froude number is excess of
unity, on the other hand, wave disturbances are carried downstream by the ambient
flow. This situation is referred to as supercritical.

The transition between these two regimes is called the hydraulic jump, which
implies a Froude number of unity. In this situation, wave disturbances remain
trapped and can amplify. Hydraulic jumps occur when a flow of water at high,
supercritical velocity discharges into a zone of lower, subcritical velocity. Lee waves
of large amplitudes are the traces of such hydraulic jumps.
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3.13 Exercise 7: Lee Waves

3.13.1 Task Description

We consider a model domain, 500 m in length and 100 m in depth, resolved by a
horizontal grid spacing of Δx = 5 m and a vertical grid spacing of Δz = 2 m
(Fig. 3.27). Lateral boundaries are cyclic. A small submarine sill is included of a
height of 40 m and a width of about 100 m. A cosine function is used for the cre-
ation of this sill. Forcing is provided via prescription of ambient barotropic pressure-
gradient force that is added as additional terms in the u-momentum equation as:

Forcing term = −g
∂ηo

∂x

where ∂ηo/∂x is a prescribed ambient sea-level gradient. This forcing, which oper-
ates to gradually accelerate the flow into the positive x-direction, is switched off
after 20 min of simulation.

Two different stratification scenarios are considered. The first scenario deals with
a water column in which density increases initially linearly with depth (Fig. 3.27a).
The background sea level is assumed to vary by 0.5 cm over the length of the model
domain. The stability frequency (squared) is varied in a range between N 2 = 0.5 ×
10−4 s−2 and N 2 = 5×10−4 s−2. The second scenario deals with two superimposed
layers of different densities both 50 m in thickness (Fig. 3.27b). Each layer is slightly
stratified with a stability frequency squared of N 2 = 0.5 × 10−4 s−2. A density
interface, also called pycnocline, separates both layer. Density stratification across
this interface corresponds to a stability frequency (squared) of N 2 = 4.8×10−3 s−2,
which is stronger than any stratification considered in Scenario 1. In this scenario,

Fig. 3.27 Different initial density configurations used in Exercise 7
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case studies consider variations of the barotropic forcing with the background sea
level varying between 0.1 and 1.5 cm over the length of the model domain.

Density diffusion is included in both scenarios with horizontal and vertical den-
sity diffusivities being set to small uniform values of Kh = Kz = 1 × 10−4 m2/s.
The total simulation time is 60 min with data outputs at one-minute intervals. The
pressure accuracy for the S.O.R. iteration is set to ε = 1 × 10−3 Pa. The time step
is set to Δt = 1 s, using the rigid-lid approximation. Note that neither momentum
diffusion nor boundary friction is yet included in the momentum equations.

3.13.2 Results: Continuous Density Stratification

For a weak initial stratification (N 2 = 0.5×10−4 s−2), the flow over the sill triggers
a standing internal lee wave of an enormous wave height of 40 m on a wavelength of
approximately 150 m (Fig. 3.28a). Near-bottom water is lifted across the sill where
it becomes subject to vigorous mixing via the breaking of internal waves. This insta-
bility mechanism is responsible for the localised generation of internal waves in the
ocean.

The situation is different for a stronger initial stratification (N 2 = 5 × 10−4 s−2)
(Fig. 3.28b). In this case, the sill operates as a barrier for the flow with the conse-
quence that flow below sill depth is almost absent. Interaction between flow at mid
depth and bathymetry creates lee waves of a reduced height of 10 m. This demon-
strates that, for strong density stratification, bathymetric obstacles can operate as a
barrier for flows.

According to Eq. (3.55), the phase speed of internal waves in a fluid of continuous
density stratification depends on the wavelength of the disturbance. In this situation,
a hydraulic jump flow will always generate lee waves of a wavelength corresponding

Fig. 3.28 Exercise 7.
Scenario 1. Density
distribution (shading) and
flow field (arrows) after
40 min of simulation.
Panel (a) shows results
for an initial value of
N 2 = 0.5 × 10−4 s−2, panel
(b) for N 2 = 5 × 10−4 s−2.
Flow vectors are averaged
over 5 by 5 grid cells
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to a Froude number of unity. We anticipate that stronger density stratification leads
to smaller amplitudes of lee waves.

3.13.3 Results: Two-Layer Stratification

Existence of a pycnocline supports the creation of long interfacial waves of a phase
speed of (e.g. Pond and Pickard, 1983):

c =
√

g′h∗ (3.63)

where reduced gravity is g′ = Δρ/ρog with Δρ being the difference in layer
densities, and the reduced depth scale is given by: h∗ = H1 H2/(H1 + H2), where
H1 and H2, are the initial thicknesses of the upper and lower layers.

In contrast to long internal waves in a fluid of continuous density stratification,
the phase speed of such waves is independent of wavelength. In this situation, the
creation of a hydraulic jump exclusively depends on whether the incident flow is
swift enough to become supercritical over the sill. For the density configuration
of Scenario 2, the phase speed of interfacial waves is about 50 cm/s upstream the
topographic obstacle, but decreases to 28 cm/s over the hill. The occurrence of a
hydraulic jump and lee wave formation requires an ambient flow of speed exceeding
30 cm/s.

The choice of a sea-level gradient of 0.1 cm over the length of the model domain
creates an ambient flow of maximum speed of 16 cm/s over the sill, which is not
sufficient to create a hydraulic jump (not shown). The reader can easily verify
this statement with own simulations. For a increased sea-level gradient of 0.5 cm,
the flow speed increases to values of 35 cm/s above the sill. This is sufficient to
produce interfacial waves of a height of 10 m in the lee of the sill (Fig. 3.29a).

Fig. 3.29 Exercise 7.
Scenario 2. Density
distribution (shading and
lines) and flow field (arrows)
after 35 min of simulation.
Panel (a) shows result for a
background sea-level gradient
of 0.5 cm over the length of
the model domain, panel (b)
for 1.5 cm. Flow vectors are
averaged over 5 by 5 grid
cells
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Further enhanced forcing provided by a background sea-level gradient of 1.5 cm
over the length of the domain triggers massive internal waves of a height of 40 m
(Fig. 3.29b). This demonstrates that swift flows can trigger large-amplitude internal
waves at density interfaces despite strong vertical density contrasts.

3.13.4 Additional Exercise for the Reader

Repeat this exercise with different shapes of topographic obstacles and/or different
configurations of the initial density field. For instance, it would be interesting to
explore resultant wave patterns for a system of three superimposed layers of differ-
ent densities.

3.14 Oceanic Convection

3.14.1 Background

Density-driven convection is a form of instability that is triggered by unstable
density stratification in fluids. Convection produces vigorous vertical mixing and,
hence, aims at reestablishing a statically stable density field. The theory of density-
driven convection can be traced back to early studies of Bénard (1900) and
Rayleigh (1916).

Convective stirring develops when heating up a fluid from below. The heating
decreases the fluid’s density near the bottom and produces fluid being less dense
than surrounding fluid. The associated buoyancy force triggers individual plumes of
fluid moving upward. Owing to volume conservation, rising fluid has to be accom-
panied by sinking of ambient fluid. The result is a concert of rising and sinking
fluid parcels, called free convection. In contrast, forced convection is dominated by
shear-flow instabilities, discussed in Sect. 3.10.

Oceanic convection is created by a surface heat loss and associated cooling
and/or by an increase in salinity owing to evaporation or new ice formation. Convec-
tion is a common process in the surface-mixed layer of the oceans. It can develop
during night-time cooling. If sustained over a long time, convection in the open
ocean can mix the surface water column to a depth of several hundred metres; in a
few regions such as the Greenland Sea and the Labrador Sea even to great depths
> 2,000 m. Marshall and Schott (1999) give a comprehensive review of the current
knowledge of deep-reaching convection in the open ocean.

3.14.2 Free Convection

In the absence of a vertical shear flow, unstable density stratification only leads
to convection if dynamical disturbances can grow against the effects of vertical
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diffusion of momentum and density. The onset of free convection can be charac-
terised by a threshold value of the Rayleigh number, introduced by Rayleigh (1916):

Ra =
∣∣N 2

∣∣ d4

kν
(3.64)

where N is the stability frequency (which is of negative sign for unstable density
stratification), d is the thickness of the unstably stratified fluid layer, k is molecular
diffusivity of density, and ν is kinematic molecular viscosity. Molecular diffusion is
associated with random motions of molecules (Brownian motion). For a turbulent
background fluid, some scientists use turbulent equivalents in Eq. (3.64).

3.14.3 The Flux-Rayleigh Number

The appearance of oceanic convection is the result of a surface buoyancy flux cre-
ated by air-sea fluxes of heat and freshwater (changing salinity). A linearised equa-
tion of state is sufficient to derive surface buoyancy fluxes as a function of these heat
and freshwater fluxes. This equation reads:

ρ(T, S) = ρo [1 − α(T − To) + β(S − So)] (3.65)

where the reference density ρo corresponds to a reference temperature To and a ref-
erence salinity So. The parameter α is the thermal expansion coefficient and β is an
equivalent coefficient, sometimes called saline contraction coefficient, for salinity-
related variations in density. The surface buoyancy flux B is defined indirectly via
associated density changes in the surface mixed layer of thickness h that follow:

dρmix

dt
= ρo

gh
B (3.66)

With use of the equation of state (Eq. 3.65) and thermodynamic relations between
surface temperature changes with surface heat fluxes and salinity changes with sur-
face freshwater fluxes, the surface buoyancy flux can be calculated from:

B = g

[
α

ρoCP
Q + β(E − P)Smix

]

where CP is the heat capacity of water, Q is the surface heat flux, Smix is salinity
of the surface mixed layer, and (E − P) is evaporation minus precipitation (units
are m/s). Gill (1982) presents tables of α, β, and CP for seawater as functions of
ambient temperature and salinity.

Free convection develops if a certain threshold value of the flux-Rayleigh number
is exceeded, whereby this number is defined by (Marshall and Schott, 1999):

Ra f = Bd4

k2ν
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Considerations of Rayleigh numbers are useful for studies of the onset of con-
vection in laboratory settings and computer-based simulations. Values of critical
flux-Rayleigh numbers in the real situation, however, are not known with any cer-
tainty.

3.14.4 Aspect Ratio of Convection Cells

The distance of adjacent convective plumes is typically twice their penetration depth
(Turner, 1973), which can be expressed in terms of a geometric ratio called aspect
ratio of convection cells (Fig. 3.30). This knowledge is useful for adequate choices
of grid spacings and model-domain size. Recall that the length scale of a process
should be spatially resolved by at least 10 grid points and that the size of the model
domain should exceed this length scale several times. A penetration depth of 100 m,
for instance, suggests the use of horizontal and vertical grid spacings of <10 m,
while the model domain should have a width of approximately 1 km, such that a
sufficient number of convection cells can develop inside the domain.

Fig. 3.30 Illustration of convection in the surface mixed layer of the ocean

3.14.5 Convective Mixed-Layer Deepening

Consider a water column in which density initially increases linearly with depth
according to:

ρ(z) = ρo

(
1 + N 2

g
|z|

)

where ρo is the initial surface density, and the stability frequency is given by
Eq. (1.6). After convective mixing to a certain depth h (Fig. 3.31), the density
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throughout the surface mixed layer equals that found at depth h; that is,

ρmix = ρo

(
1 + N 2

g
h

)

The temporal derivative of the latter equation gives:

dρmix

dt
= ρo

N 2

g

dh

dt

Using Eq. (3.66) gives the relation (Turner, 1973):

h
dh

dt
= 0.5

dh2

dt
= B

N 2
(3.67)

which has the solution:

h(t) =
√

2 B

N 2
· t

Accordingly, for a constant surface buoyancy flux, convective mixed-layer deep-
ening slows down with time in a square-root fashion. For a given surface buoyancy
flux, on the other hand, weaker ambient density stratification promotes a more rapid
convective mixed-layer deepening.

Fig. 3.31 Contributions to
density increases in the
surface mixed layer subject to
convective mixing. Half the
total surface density increase
(symbolised by A) is
provided by mixing of the
initial ambient density
gradient over the depth h, the
other half (symbolised by B)
is supplied by the surface
buoyancy flux

3.15 Exercise 8: Free Convection

3.15.1 Aim

The aim of this exercise is to simulate the free convection process in the ocean with
the vertical ocean-slice model.
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3.15.2 Task Description

Consider an ocean slice of 100 m in depth and 1,000 m in length (Fig. 3.32),
resolved by equidistant grid spacings of Δx = Δz = 5 m. Cyclic boundary con-
ditions are used at the lateral boundaries. A linear version of the equation of state
is used (Eq. 3.65), whereby salinity effects are ignored. The thermal expansion
coefficient is set to a value of α = 2.5×10−4 K−1. Initially, the water column is at
rest and stably stratified in temperature with a stability frequency of N = 10−3 s−1.
Random density fluctuations with maximum values of 10−4 kg/m3 are added to the
density field using the random-number generator of previous exercises.

A uniform heat loss of Q = 600 W/m2 is prescribed at the sea surface. In the
absence of other processes (such as downward diffusion) this heat loss would cool
the uppermost grid cell at a rate of:

∂Ts

∂t
= − Q

ρoCPΔz

where CP is the heat capacity of seawater which has a value of around CP =
4, 000 J kg−3 K−1. The corresponding temperature decrease would be 1.2◦C per
day for a water basin of 5-m depth, which is the vertical grid space used. On
the basis of Eq. (3.65), surface density in this depth-confined basin would change
according to:

∂ρs

∂t
= αQ

CPΔz

where the sign of heat flux is defined such that positive values incur a density
increase. In addition to isotropic density diffusion with small values of diffusiv-
ity of Kh = Kz = 10−4 m2/s, isotropic diffusion of momentum is added to the

Fig. 3.32 Initial configuration for Exercise 8. Shading and lines show the initially stable density
stratification of the water column
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code with a viscosity of Ah = Az = 10−4 m2/s, which is close to molecular val-
ues. This also gives us the opportunity to include a quadratic bottom-friction law,
reading:

τ bot
x

ρo
=

(
Az

∂u

∂z

)
z=−h

= r ub |ub|

where ub is the horizontal flow adjacent to the sea floor. The bottom-drag coefficient
is set to r = 0.001. The total simulation time is 6 hrs with data outputs at every
3 min. The time step is set to Δt = 1 s. The pressure accuracy of the S.O.R. iteration
is set to ε = 1 × 10−3 Pa. This model application uses the rigid-lid approximation
(see Sect. 3.7).

3.15.3 A Trick to Avoid Substantial Round-off Errors

Owing to small numerical time steps, density increments caused by surface cooling
are very small (10−8 kg/m3) compared with the ambient density (1,028 kg/m3).
When using true seawater density in the code, these minute density increments tend
to get lost due to round-off errors. The consequence is that you cannot simulate the
convection process when using true density. The trick to avoid this is to rather use
relative density (ρ − ρs), where ρs is the initial surface value, as a variable in the
code, which significantly increases the accuracy of the prediction.

3.15.4 Inclusion of Momentum Diffusion and Bottom Friction

The momentum equations including diffusion terms can be written as:

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= − 1

ρo

∂(p + q)

∂x
+ Diff(u) (3.68)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= − 1

ρo

∂q

∂z
+ Diff(w) (3.69)

where the diffusion operator is defined by:

Diff(ψ) = ∂

∂x

(
Ah

∂ψ

∂x

)
+ ∂

∂z

(
Az

∂ψ

∂z

)

where the symbol ψ stands for either u or w. This formulation includes spa-
tially variable values of eddy viscosities Ah and Az , which is considered in later
exercises.
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Horizontal and vertical diffusion of u can be formulated in finite-difference form
as:

∂

∂x

(
Ah

∂u

∂x

)
= Ae

x (ui,k+1 − ui,k) − Aw
h (ui,k − ui,k−1)

(Δx)2
(3.70)

∂

∂z

(
Az

∂u

∂z

)
= A+

z (ui−1,k − ui,k) − A−
z (ui,k − ui+1,k)

(Δz)2
(3.71)

where interpolated values of eddy viscosities are given by:

Ae
h = Ah,i,k+1

Aw
h = Ah,i,k

A+
z = 0.25

(
Az,i,k + Az,i,k+1 + Az,i−1,k + Az,i−1,k+1

)
A−

z = 0.25
(

Az,i,k + Az,i,k+1 + Az,i+1,k + Az,i+1,k+1
)

Horizontal and vertical diffusion of w is calculated in a similar fashion from:

∂

∂x

(
Ah

∂w

∂x

)
= Ae

h(wi,k+1 − wi,k) − Aw
h (wi,k − wi,k−1)

(Δx)2
(3.72)

∂

∂z

(
Az

∂w

∂z

)
= A+

z (wi−1,k − wi,k) − A−
z (wi,k − wi+1,k)

(Δz)2
(3.73)

where:

Ae
h = 0.25

(
Ah,i,k + Ah,i,k+1 + Ah,i−1,k + Ah,i−1,k+1

)
Aw

z = 0.25
(

Ah,i,k + Ah,i,k−1 + Ah,i−1,k + Ah,i−1,k−1
)

A+
z = Az,i−1,k

A−
z = Az,i,k

These diffusion terms, multiplied with the numerical time step, are added as addi-
tional components to the u∗ and w∗ arrays in Eq. (3.45) and (3.46). Bottom friction
is implemented in the bottom-nearest grid cell via a quadratic bottom-friction law
formulated as:

A−
z

ui,k − ui+1,k

Δz
= r ui,k

∣∣ui,k

∣∣
The above finite-difference forms of the diffusion terms are associated the stabil-

ity condition:

Δt ≤ min

{
(Δz)2

max(Az)
,

(Δx)2

max(Ah)

}
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In comparison, the CFL stability criteria (Eqs. 3.35 and 3.43) are often (but not
always!) associated with relatively shorter time steps.

3.15.5 Results

Surface cooling creates unstable density stratification in vicinity of the sea surface
(Fig. 3.33). The degree of unstable stratification increases over time to a point when
the critical Rayleigh number is exceeded and convection follows. This onset of
convection takes place in this experiment after approximately 40 min of simula-
tion. Convection cells appear near the surface on a fairly small spatial scale set by
the grid spacing prescribed. Convection cells comprise individual sinking plumes
and compensating upward flows. Individual plumes attain vertical speeds of up to
12 cm/s.

Fig. 3.33 Exercise 8. Distributions of relative density (ρ − ρs ) (color shading and contours) at
selected times of the simulation. Shown are values of relative density in a range between 0 and
0.02 kg/m3
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Given that the ambient water column is initially stably stratified, the penetration
depth of the convective plumes gradually increases with time. The reader is encour-
aged to compare the simulated rate of mixed-layer deepening with that predicted by
the solution to Eq. (3.67). The spacing between plumes increases as the penetration
reaches greater depths. The predicted aspect ratio of convection cells of 1.5–2 is in
agreement with theory. Convective plumes reach the sea floor at 100-m depth after
about 3 hrs of applied surface heat loss. The final result of convection is an almost
well-mixed water column.

3.15.6 Additional Exercise for the Reader

Repeat the convection exercise with a fluid of two superimposed layers of differ-
ent densities. Do convective plumes induce internal waves at the density interface?
The reader is also encouraged to repeat this exercise with a stronger initial density
stratification.

3.16 Exercise 9: Convective Entrainment

3.16.1 How It Works

Convection produces vigorous mixing in upper parts of an otherwise stratified water
column. As the convection layer deepens, convective plumes mix deeper water into
this layer – a process which is called entrainment. Convective entrainment of heat
plays an important role in polar oceans, for it can delay or even prevent sea ice for-
mation, which would occur if the surface water were cooled down to temperatures
below the freezing-point temperature.

3.16.2 Entrainment Velocity

For an ocean of initially stable density stratification, Eq. (3.67) implies that the
thickness of the convective mixed layer h increases at a rate of:

dh

dt
= B

N 2h

This mixed-layer deepening can be directly taken as a vertical entrainment veloc-
ity. This velocity determines how much heat, salt and other water properties become
mixed into the convection layer.



66 3 Basics of Nonhydrostatic Modelling

3.16.3 Task Description

For illustration of the convective entrainment process, we repeat Exercise 8 with
addition of both Eulerian tracer concentration and non-buoyant Lagrangian floats.
To this end, an advection-diffusion equation for tracer concentration C is added to
the code reading:

∂C

∂t
+ Adv(C) = Diff(C)

where the same eddy diffusivities are used as in the density conservation equation.
Concentrations are initialised with values of unity in a 25-m thick near-bottom layer
and zero values elsewhere. In conjunction with this, 3,000 Lagrangian floats are
initially distributed at random locations within 25 m from the sea floor. Changes of
float locations (x∗, z∗) are calculated from simple displacement equations:

dx∗

dt
= u and

dz∗

dt
= w

where (u, w) is the velocity predicted by model in vicinity of the float. Instead of
accurate interpolation of velocity to the precise location of a float, it is sufficient for
the purpose of this exercise to use the velocity in the grid cell surrounding a float
as a proxy. Hereby, velocity components are interpolated to pressure grid points
and the grid cell containing a float is defined within ±0.5Δx distance horizontally
and ±0.5Δz distance vertically with respect to this grid point. Special treatment is
required to avoid stranding of floats in dry grid cells. Section 5.8 describes a more
accurate method.

The total simulation time is 6 hrs with data outputs at every 2.5 min of the sim-
ulation. The time step is set to Δt = 1 s using the rigid-lid approximation. Note
that the model gives similar results with inclusion of a free surface. This, however,
requires a shorter time step of Δt = 0.1 s, leading to a tenfold increase of the total
simulation time.

3.16.4 Results

It takes about 2 hrs of applied surface buoyancy flux until convective plumes
reach into the bottom layer to entrain near-bottom water into the convection layer
(Fig. 3.34). Again, we can see that the product of convection is an almost perfectly
mixed water column. As expected, Lagrangian floats are also entrained into the con-
vection layer (Fig. 3.35). We can imagine that these floats represent small sediment
particles being mixed into the water column.
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Fig. 3.34 Exercise 9. Distributions of Eulerian tracer concentration (color shading) at selected
times of the simulation. Shading refers to a range in concentration between 0 and 1. Lines are
density contours

3.16.5 Additional Exercises for the Reader

Produce a Scilab script that produces a graph of the pathways, called trajectories,
of selected floats. What is the greatest horizontal distance travelled by a float?

3.17 Exercise 10: Slope Convection near the Shore

3.17.1 Background

Under the same heat loss, a smaller volume of fluid cools down at a faster rate than
a larger volume. Therefore, we expect that convection produces the densest water
in the shallowest regions of a coastal ocean. In the presence of variable bathymetry,
a uniform surface buoyancy flux will consequently create lateral density gradients
and, hence, lateral pressure gradients in the ocean. A buoyancy-driven exchange
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Fig. 3.35 Exercise 9. Distributions of 3,000 Lagrangian floats at selected times of the simulation.
Lines are density contours

circulation between shallow and deeper portions of the ocean follows. The aim of
this exercise is to simulate this density-driven overturning circulation using the non-
hydrostatic convection model in a domain of variable bathymetry.

3.17.2 Implementation of Bottom Friction on a Sloping Terrain

The stair-step nature of z-coordinate systems requires special treatment for the cal-
culation of bed-shear stresses. This needs to include all wet u-velocity grid points
situated directly above the sea floor, but also those that sit directly above the corner
of a step. Figure 3.36 gives an example.

3.17.3 Task Description

We consider a vertical ocean slice of 1 km in length and variable bathymetry,
resolved by equidistant grid spacings of Δx = Δz = 5 m (Fig. 3.37). Lateral
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Fig. 3.36 Circles indicate u-velocity grid points used for calculation of bed shear stresses

boundaries are closed. The bathymetry consists of a sloping transition zone that
connects a shallow region (20 m) with a deeper region (100 m). Initially, the ocean
is at rest and consists of two superimposed layers of different densities. The density
interface is located at a depth of 50 m and is characterised by a stability frequency
of N = 7.6 × 10−3 s−1. Each of the two layers is slightly stratified in density with
a stability frequency of N = 1 × 10−3 s−1. Random density fluctuations with maxi-
mum values of 10−4 kg/m3 are added to the density field using the random-number
generator of previous exercises.

Eddy diffusivities, eddy viscosities and the bottom-drag coefficient are the same
as in Exercise 8. The time step is set to Δt = 2 s using the rigid-lid approximation.
The pressure accuracy for the S.O.R. iteration is set to ε = 1 × 10−3 Pa. The total
simulation time is 12 hrs with data outputs at 6-min intervals. A uniform heat loss of
Q = 600 W/m2 is prescribed at the sea surface for the first 6 hrs of simulation. The
heat loss is set to zero for the rest of the simulation to explore the density-driven
adjustment process that follows. Note that such a forcing does rarely ever occur in
nature. It is applied her for demonstration purposes only. Eulerian tracer concentra-
tion is added to the water column with initial values of unity in the upper 20 m of
the water column and zero values elsewhere.

Fig. 3.37 Exercise 10. Density distribution (shading and lines) after 48 min of the simulation
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3.17.4 Results

The surface heat loss triggers convective mixing in the surface layer (Fig. 3.38).
Convective plumes extend to the sea floor in shallow regions and penetrate into the
pycnocline in deeper portions of the model domain. They create internal waves at
the pycnocline that operate to entrain pycnocline water into the surface mixed layer.

The aspect ratio of convection cells is of the order of 2. An exception are the
shallow regions where the aspect ratio approaches values of 4. This bias is presum-
ably caused by the relatively coarse grid spacing chosen, which does not adequately
resolve the length scale of convection cells in this region.

Owing to limited penetration, the density gain in shallow water exceeds that
in deeper water, so that a density contrast between shallower and deeper regions
develops over time. With the vanishing surface heat flux, the dense water formed in
the shallow regions forms of a gravity current flowing downward on the slope. This
triggers a return flow in upper parts of the water column, which is a requirement of
volume conservation, driven by a lateral pressure gradient owing to an inclined sea
surface.

Fig. 3.38 Exercise 10. Snapshots of density distribution (shading and contours) at selected times
of the simulation
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The evolution of Eulerian tracer concentration reveals that the density-driven
current leaves the slope and spreads horizontally at a depth of approximately 50 m,
where it encounters ambient water of equal density (Fig. 3.39). Hence, convection in
shallow water can operate to ventilate sub-surface water in adjacent deeper layers of
the water column. Interestingly, the laterally injected water layer, being 10 m thick,
forms a large-amplitude undulation as it becomes subject to internal wave motions
of the pycnocline.

It should be noted that bottom-arrested flows on a step-structured sea floor
of z-coordinate models are substantially biased because their zigzag pathway is
much longer than that of real bottom-parallel flows. Another artifact is that, while
descending on the bathymetric stairs, the head of a plume has to spread laterally first
before it can sink to the next deeper level. This induces transient unstable density
stratification, which in reality does not exist, that may bias the dynamics via artificial
convective adjustments.

Fig. 3.39 Exercise 10. Snapshots of distribution of Eulerian tracer concentration (color shading)
at selected times of the simulation. Lines are density contours

3.17.5 Additional Exercise for the Reader

Extend the simulation time of this exercise to 24 hrs and apply the surface heat
flux over the initial 12 hrs. Note that, for simplicity, rotational effects owing to the
Coriolis force, that could modify the dynamics, are still neglected. How deep does
the resultant dense water flow penetrate into the ambient water column? The reader
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is also encouraged to add the Lagrangian float prediction scheme to the model code
as another means to track movement of the density-driven plume.

3.18 Double Diffusion

3.18.1 Background

Molecules perform random motions, called Brownian motion (Brown, 1866), in the
absence of turbulence. The result of this motion is a slow but continuous molecular
diffusion which operates to smooth curvature in spatial distributions of a property.
The rate of molecular diffusion of heat is about 100 times that for salt. Hence, molec-
ular diffusion in a water column uniform in density but gradients in temperature and
salinity gives rise to local density variations that can trigger the onset of convection
in the interior of the water column (Turner, 1973). The type of instability that devel-
ops depends on the specific shapes of vertical profiles of temperature and salinity
that make up the density stratification.

3.18.2 Double-Diffusive Instability

Suppose there is a warm and saltier layer above cooler, fresher water, with both
layers having the same density (Fig. 3.40a). The relatively faster molecular diffusion
of heat causes the upper layer to cool near the interface. The associated density
increase creates convective plumes sinking downward across the interface and into
the bottom layer. Similarly, the bottom layer gains heat near the interface which
lowers density. As a consequence of this, convective plumes raise upward and into
the surface layer. The resultant convective mixing is referred to as double-diffusive
instability or salt fingering.

Fig. 3.40 Different stratification scenarios of a water column uniform in density leading to distinct
double-diffusive processes. Scenario (a) causes double-diffusive mixing across the interface. Sce-
nario (b) leads to isolated convective mixing in each layer and a density contrast develops between
the layers
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3.18.3 Double-Diffusive Layering

Suppose there is a cooler, fresher layer above warmer, saltier water with the same
density (Fig. 3.40b). In this case, molecular diffusion of heat warms the surface
layer from below. As a result of this, convection develops in the top layer. Similarly,
cooling from above triggers convection in the bottom layer. In contrast to the double-
diffusive instability, there is only little mixing across the interface. Moreover, the
molecular heat flux at the interface leads to the formation of a density difference
between the layers. The final result is a layer structure with a sharp density contrast
across the interface. This situation is referred to as double-diffusive layering.

3.18.4 The Gradient Ratio and the Turner Angle

A gradient ratio can be defined by:

Rρ = α∂T/∂z

β∂S/∂z
(3.74)

where α is the thermal expansion coefficient, and β is the salinity coefficient in the
equation of state (Eq. 3.65). This ratio gives the relative contributions of thermal
gradients and saline gradients to the density stratification. For a two-layer fluid, the
latter relation can be written as:

Rρ = αΔT

βΔS
(3.75)

where ΔT and ΔS are temperature and salinity contrasts between the layers. Since
the gradient ratio can attain infinite values, it is more convenient to use the so-called
Turner angle, which is defined by (Ruddick, 1983):

T u = arctan

(
Rρ − 1

Rρ + 1

)
(3.76)

The Turner angle is used for the classification of different dynamic mixing
regimes that can develop in the ocean (Fig. 3.41). Turner angles |T u| > 90◦ charac-
terise unstable density stratification supporting the onset of thermohaline free con-
vection (see Sect. 3.14). Turner angles of ±90◦ characterise situations of vanishing
density gradients, whereas Turner angles in a range between ±45◦ and ±90◦ can
lead to either double-diffusive instability or double-diffusive layering. Turner angles
less than ±45◦ correspond to a stably stratified configuration that does not support
either of these processes.
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Fig. 3.41 Dynamical regimes for different gradient ratios and Turner angles

3.19 Exercise 11: Double-Diffusive Instability

3.19.1 Aim

The aim of this exercise is to explore the double-diffusive instability mechanism
with application of the nonhydrostatic ocean-slice model.

3.19.2 Task Description

We consider a model domain, 200 m in length and 20 m deep, resolved by equidis-
tant grid spacings of Δx = Δz = 1 m. Lateral boundaries are cyclic. Advection-
diffusion equations for temperature and salinity together with a linearised equation
of state are added to the model code. Diffusivity of heat is set to a uniform value of
10−4 m2/s and diffusivity of salt is chosen as 10−6 m2/s. These values, exceeding
true values by a factor of 1,000, are deliberately chosen to speed up the simulation.

Rather than full values, we use temperature anomalies T ′ and salinity anomalies
S′ with reference to constant background values as field variables. Accordingly, the
linearised equation of state can be written as:

ρ ′ = ρ − ρo = ρo(βS′ − αT ′) (3.77)
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where ρ ′ is density anomaly, the thermal expansion coefficient is set to α = 2.5 ×
10−4 K−1, and the salinity coefficient is set to β = 8×10−4. The advection-diffusion
equations for temperature and salinity anomalies read:

∂T ′

∂t
+ Adv(T ′) = KT

(
∂2T ′

∂x2
+ ∂2T ′

∂z2

)

∂S′

∂t
+ Adv(S′) = KS

(
∂2S′

∂x2
+ ∂2S′

∂z2

)

where KT and KS are molecular diffusivities. Note that temperature and salinity
values are calculated at the same grid points as density. The advection-diffusion
equations for temperature and salinity have the same form as the density conserva-
tion equation, used in previous exercises, except for different values of diffusivities.
Inclusion of these equations in the simulation code is therefore a simple copy-and-
paste and renaming task.

The initial density field consists of two superimposed layers of the same density
and a thickness of 10 m each. The top layer is T ′ = 10◦C warmer compared with the
bottom layer. Small random disturbances in temperature of 10−4◦

C in magnitude are
added. The salinity excess is calculated from Eq. (3.77) such that the initial density
field is spatially uniform. The initial gradient ratio is Rρ = 1. The initial Turner
angle is T u = +90◦ (see Fig. 3.40). Eddy viscosity is set to a uniform value of
Ah = Az = 10−4 m2/s. The bottom-friction parameter is set to r = 0.001.

A total of 3,000 Lagrangian non-buoyant floats are randomly distributed across
the surface layer for visualisation of the double-diffusive instability process. The
total simulation time is 1 hr with data outputs at every min. The time step is set
to Δt = 1 s using the rigid-lid approximation. Pressure accuracy of the S.O.R.
iteration is set to ε = 1 × 10−3 Pa. In order to monitor the change in thermal
and saline contrasts between the layers, we also calculate layer-averaged values of
temperature and salinity in each layer to determine the trends of αΔT and βΔS.

3.19.3 Results

Diffusion of heat creates a thin layer of unstable density stratification in vicinity of
the interface (Figs. 3.42 and 3.43). Small-scale dynamic instabilities appear in vicin-
ity of the interface within the first 6 min of simulation triggering convective mixing
of fluid parcels across the density interface. The size of convection cells gradually
increases with time. Individual convective plumes attain maximum vertical speeds
of 5–6 cm/s. Density anomalies inherent with the double-diffusive instability attain
magnitudes of ±0.1–0.2 kg/m3. Evolution of the locations of Lagrangian floats (not
shown) visualises the tendency of mixing over the entire water column.

The double-diffusion process is independent of direction and also operates in
vicinity of sharp lateral temperature gradients across the “skin” of individual plumes.
Hence, forcing involved in the double-diffusive instability mechanism is of complex
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Fig. 3.42 Exercise 11. Snapshots of the temperature distribution (shading) at selected times of the
simulation. Lines are density contours

Fig. 3.43 Exercise 11. Snapshots of the density distribution (shading and contours) at selected
times of the simulation
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three-dimensional nature. The result of the double-diffusive instability is a slightly
stratified water column characterised by a stability frequency of N = 4×10−3 s−1.
This weak residual density stratification is caused by the initial outburst of con-
vective plumes moving density anomalies away from the initial density interface.
In due course of the double-diffusive instability process, the Turner angle remains
close to a value of 90◦ while the temperature and salinity contrasts between the
layers gradually become weaker (Fig. 3.44).

Fig. 3.44 Exercise 11. Evolution of temperature and salinity contrasts between the layers (arrow)
expressed in equivalent density units. The open circle denotes the initial value. The arrow head
points to the final value after 60 min of simulation

3.20 Exercise 12: Double-Diffusive Layering

3.20.1 Aim

The aim of this exercise is to explore the double-diffusive layering process in a water
column which is initially uniform in density, but displays sharp vertical contrasts in
temperature and salinity.

3.20.2 Task Description

This exercise is a repeat of Exercise 11 except for a vertical swap of the lay-
ers. The warm, saline layer is located this time below a layer of colder, fresher
surface water. The temperature difference between the layers is 10◦C and the
salinity contrast is chosen such that density is spatially uniform. The initial gradient



78 3 Basics of Nonhydrostatic Modelling

ratio is again Rρ = 1, but the initial Turner angle is T u = −90◦ (see Fig. 3.41). The
total simulation time is 1 hr with data outputs at 1-min intervals.

3.20.3 Results

Molecular heat exchange across the interface creates convection in each layer sepa-
rately (Fig. 3.45). Only little turbulent mixing occurs across the interface. The onset
of convective instabilities occurs after 10 min of simulation. The aspect ratio of con-
vection cells is between 1 and 2. In several instances, individual convective plumes
manage to plunge into the other layer causing some entrainment of fluid across the
density interface. The double-diffusive layering process leads to the creation of a
density contrast between the layers (see Fig. 3.45).

The author repeated this exercise with a prolonged total simulation time of 24 hrs
(which took several hours to complete) in order to verify the final state result-
ing from the double-diffusive layering process. Over this time span, the Turner
angle increased from −90◦ to −78◦ (Fig. 3.46), which is in stark contrast to
the double-diffusive instability process (see Fig. 3.44). This is again evidence of
the formation of a density interface between the layers, but also shows the ten-
dency of slow erosion of temperature differences while a certain salinity contrast
remains.

Fig. 3.45 Exercise 12. Snapshots of density distribution (shading and contours) at selected times
of the simulation
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Fig. 3.46 Exercise 12. Evolution of temperature and salinity contrasts between the layers (arrow)
expressed in equivalent density units. The open circle denotes the initial value. The arrow head
points to the final value after 24 hrs of simulation

3.20.4 Additional Exercises for the Reader

Repeat Exercises 11 and 12 with a two-layer configuration corresponding to a
Turner angle in a range of (plus or minus) 60◦–75◦. Explore how the Turner angle
evolves over time. The reader is also encouraged to consider a fluid of three super-
imposed layers that are density compensated but display contrasts of temperature
and salinity.

3.21 Tilted Coordinate Systems

3.21.1 The Governing Equations

The Cartesian coordinate system can be tilted by a certain angle γ (Fig. 3.47)
for studies of the dynamics of stratified flows on a sea floor of constant bottom
inclination. Since this rotation rotates the entire model domain, inclusion of a free
sea surface is not possible anymore, and the rigid-lid approximation (see Sect. 3.7)
must be employed. With this approach, the rotated vertical axis zr differs from the
local vertical and, hence, from the orientation of the gravity force. Accordingly,
some fraction of the reduced-gravity force appears along rotated xr surfaces and the
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Fig. 3.47 Tilted coordinate system

dynamical equations can be written as:
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where ur is the bottom-parallel component of velocity, and wr is the velocity com-
ponent perpendicular to the sea floor. The diffusion operator can be defined by:

Diff(ψ) = ∂

∂xr

(
Ah

∂ψ

∂xr

)
+ ∂

∂zr

(
Az

∂ψ

∂zr

)

which is only justifiable for small bottom inclinations. As the reader can see, all this
coordinate transformation does is to rotate direction-dependent forces such as the
reduced-gravity force. The component of the reduced-gravity force normal to the
sea floor is sometimes referred to as buoyant-slope effect. In case the buoyant-slope
effect is fully balanced by a linear bottom-friction force, we yield:

sin (γ )
ρ ′

ρo
g − rur = 0

where r is a linear bottom-drag coefficient. This gives an equilibrium flow speed of
ur = sin (γ )g′/r , where g′ is reduced gravity, which depends on the density excess
carried by the flow, bottom inclination and frictional effects. This relation, however,
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is only useful in situations in which the plume is void of entrainment of ambient
fluid. Laboratory experiments suggest that, owing to entrainment, the velocity of
the plume head is almost independent of the slope angle (Britter and Linden, 1980).
Influence of the Coriolis force, not considered here, can also substantially modify
the dynamics. This will take place on time scales exceeding the inertial period.

The above equations are very similar to those used in previous exercises, apart
from an additional term in the bottom-parallel component of the momentum equa-
tion and a slight modification of the hydrostatic part of pressure when adjusted
parallel to the zr direction. Hence, only minor code modifications are required for
simulations of density-driven flows on a sloping sea floor.

3.22 Exercise 13: Stratified Flows on a Slope

3.22.1 Aim

The aim of this exercise is to employ a tilted Cartesian coordinate system to simulate
the dynamics and instability of a stratified flow on a sea floor of uniform slope.

3.22.2 Task Description

Consider a tilted model domain, 500 m in length and 100 m in thickness, resolved
by grid spacings of Δx = 5 m and Δz = 2 m (Fig. 3.48). The sea floor has a bottom
inclination of 5◦. Lateral boundaries are cyclic. The ocean is initially at rest.

The simulation is started with prescription of a 20-m thick near-bottom layer of a
density of 1,028.2 km/m3. The ambient ocean has a density of 1,028.0 km/m3. Small
random noise is added to this density field. Eddy diffusivities and viscosities are set
to a uniform value of 10−2 m2/s. The bottom-drag coefficient is set to r = 0.001. The
total simulation time is 2 hrs with data outputs at 1-min intervals. The time step is
set to Δt = 1 s. The pressure accuracy for the S.O.R. iteration is set to ε = 0.001 Pa.

Fig. 3.48 Exercise 13: Initial configuration of the density field
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3.22.3 Results

As expected, the dense bottom layer gradually accelerates on the sloping bottom
(Fig. 3.49). This creates a vertical shear flow. The shear flow becomes subject to
the Kelvin-Helmholtz instability process (see Sect. 3.10). Dynamical disturbances
appear after 70 min of simulation and create counter-clockwise rotating vortices. At
this stage, the near-bottom flow has reached speeds of 80 cm/s.

Fig. 3.49 Exercise 13: Density distributions (color shading and contours) at selected times of the
simulation. Red shading refers to the densest water
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The dynamic instability produces vigorous vertical mixing via the breaking of
internal waves. Interestingly, at later times of the simulation, velocity shear owing to
bottom friction creates a series of clockwise-rotating vortices that “roll” downward
on the slope and interact with previously created vortices that have detached from
the sea floor.

3.22.4 Additional Exercise for the Reader

Conduct a reference experiment with a small bottom inclination of, say, 1 degree.
Explore whether this slope is sufficient to create dynamical instabilities. If not,
increase the bottom inclination in additional experiments until the vertical shear
of the near-bottom flow is at a level to produce dynamical instabilities.

3.23 Estuaries

3.23.1 Definition

Estuaries are semi-enclosed and narrow bodies of water that are connected to the
coastal ocean, at least intermittently, and in which the salinity is measurably differ-
ent from that in the adjacent ocean. Estuaries are categorised as two different types
(Fig. 3.50).

Positive estuaries have a salinity less that of the adjacent ocean. These estuaries
are exposed to a humid climate and experience a surplus of freshwater input via
rivers over evaporation. Positive estuaries can be characterised by a two-layer struc-
ture with light, low-salinity water flowing toward the ocean in the upper layer and
inflow of seawater in the layer underneath. The region of maximum lateral salinity
gradients is called brackish water.

Negative estuaries, also called inverse estuaries, are situated in arid climatic
zones and they experience a net water loss owing to an excess of evaporation over

Fig. 3.50 Schematic of the circulation in positive and inverse estuaries
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precipitation-related inflows. Inverse estuaries are characterised by an outflow of
hypersaline bottom water and inflow of ambient seawater in the surface layer.

3.23.2 Classification of Estuaries According to Origin

According to their geological characteristics, estuaries can be classified as:

• drowned river valleys or coastal-plain estuaries
• bar-built estuaries or lagoons
• fjords
• tectonically caused estuaries

Coastal-plain estuaries and drowned river valleys were formed by the gradual
rise of sea level after the last glacial period, 10,000 years ago. Lagoons are similar
to coastal-plain estuaries, but these are usually situated parallel to the coastline.
Many lagoons have narrow outlets and minimum freshwater inflow, often creating
hypersaline conditions.

Fjords are long, narrow inlets with steep sides, created in a valley carved by
glacial activity. Most fjords are deeper than the adjacent sea with depths of 1,000–
2,000 m. Fjords generally have a sill at their mouth which limits the exchange with
the ambient sea, but in many cases creates extreme tidal flows. For instance, Salt-
straumen in Norway involves water currents of up to 10 m/s in speed and is therefore
often described as the world’s strongest tidal current.

Tectonic estuaries include those created by landslides, faulting and volcanic erup-
tions. San Francisco Bay in the USA is an example.

3.23.3 The Dynamics of Positive Estuaries

Continental runoff is the principle driver of flows in positive estuaries. This runoff
is associated with a barotropic pressure gradient directed toward the sea aiming to
push low-salinity surface water seaward. The density interface between the layers,
however, gives rise to baroclinic pressure gradients that support a bottom inflow of
ambient seawater into the estuary (see Fig. 3.50). The degree of mixing between
the layers, facilitated by oscillatory tidal flows, modifies the strength of this inflow,
which can supply oxygen to the benthic estuarine life.

3.23.4 Brief Overview of Tides

Tides appear in the sea as regular oscillations of the sea level on predominantly
semi-diurnal (12 hrs) and diurnal (24 hrs) periods. Obviously, these variations are
caused by convergence and divergence of oscillatory lateral flow. High tide is the
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instance of maximum sea level. Low tide refers to the minimum sea level. The tidal
range is the difference between high tide and low tide. Slack water refers to times
of no or only little tidal flow.

The tide-generating force involves the gravitational attractive force between the
Earth/Moon and Earth/Sun systems and the centrifugal force. The magnitude of the
gravitational force is proportional to mass and decreases rapidly with the square of
distance between bodies. Therefore, the Moon (due to close distance) and the Sun
(due to large mass) are the only contributors to tides on Earth. Tides are created
owing to a slight imbalance of these forces at the sea surface.

3.23.5 Dynamic Theory of Tides

Oceanic tides are long surface gravity waves of a phase propagation being con-
strained by the well-known dispersion relation Eq. (3.8). Owing to this constraint
and the existence of coastlines, tidal oceanic waves simply cannot keep pace with
the progress of the astronomical forcing. Instead of this, the tidal signal in the ocean
is rather of the form of a standing-wave response that varies in magnitude according
to the regional geometry of an oceanic basin. This “dynamic theory of tides”, first
proposed by Pierre-Simon Laplace in 1775 (Laplace, 1775), successfully describes
the apparently complex tidal patterns in the ocean.

The influence of the Coriolis force on tidal motion gives rise to a Kevin-wave
response (see Sect. 3.6.2 of Kämpf (2009)). Rotational effects support maximum
tidal sea levels propagating along the coast. Amphidromic points are locations that
display no tidal range a tidal constituent (see below). Radiating from such a point are
co-tidal phase lines, which connect points where high tide occurs simultaneously.
Co-tidal range lines, on the other hand, connect points of the same tidal range. To
this end, the tidal signal in the ocean propagates around amphidromic points and
maximum tidal ranges are often found along coastlines. This makes coastal regions
vulnerable to storm surges if these coincide with a high tide.

3.23.6 Tides in Estuaries

Tidal co-oscillations in the estuary follow from the tidal forcing of the adjacent
ocean. As the tidal wave approaches shallower water, its wavelength decreases
according to Eq. (3.8). Dependant on geometry and because of the shortening of
the tidal wave, some estuaries exhibit enormous tidal sea-level variations. The most
amplified response occurs if a wave node establishes close to the estuary’s entrance.
The Bay of Fundy on the east coast of North America, for instance, supports a
tidal range of 17 m at the northern end of the Minas Basin, which makes boating
and fishing activities rather transient ones. Natural oscillations in an enclosed or
partially enclosed body of water are called seiches.
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3.23.7 Tidal Patterns

Oceanic tides are the composite of a set of several tidal constituents also called
partial tides. The most prominent tidal constituents are briefly described in the
following. The Moon creates a semidiurnal lunar tide (abbreviated as M2), with
a period of 12 hrs and 25 min, and a diurnal lunar tide (O1), with a period of 24 hrs
and 50 min. The Sun causes a semidiurnal solar tide (S2), with a 12-hrs period, and a
diurnal solar tide (K1), with a 24-hrs period. The M2 constituent is often dominant.

The longer period of semi-diurnal and diurnal lunar tides compared with solar
tides is caused by progression of the Moon’s location during one full rotation of the
Earth. Dependant on geometry, tides can appear in shelf seas and estuaries as either
semidiurnal tides, diurnal tides, or a mixture of the latter two, called mixed tides.
Tides in the Bay of Fundy, for instance, are mixed tides, but diurnal sea-level varia-
tions appear more dominant than semi-diurnal variations. The form factor compares
the amplitudes of semi-diurnal tidal constituents (M2 and S2) with those of diurnal
tides (O1 and K1). These amplitudes can be derived from field observations using a
method called harmonic analysis, not replicated here. The form factor tells the tidal
characteristics of a region.

Wave interference is the partial or full offset of the sea-level elevation of one
wave pattern by a sea-level depression of another wave pattern. Interference of solar
and lunar tides gives rise to regular variation of the tidal range between spring tide,
when it has its maximum, and neap tide, when it has its minimum. The period
between spring and neap tide is about 14 days. In certain regions, such as Gulf St.
Vincent and Spencer Gulf in South Australia, this interference is almost perfect and
leads to almost absent tidal flows during the neap tide. This phenomenon is called
dodge tide, first reported by the explorer Matthew Flinders in 1814 (Flinders,1814).

3.23.8 Classification of Estuaries According to Stratification
and Circulation

The circulation in positive estuaries depends on the amount of freshwater received
from continental runoff and the magnitude of tidal flows inducing vertical mixing.
When using the period of the predominant tidal constituent for reference, estuaries
can be classified in terms of the amount of freshwater received over this period R,
called freshwater volume, and the amount of water that the tidal flow moves into an
estuary over a tidal cycle, referred to as V in the following. The tidal volume can be
calculated from tidal range observations and the surface area of an estuary and it is
a measure of the magnitude of tidal flows in a region. The freshwater volume has to
be derived from measurements of flow rates at the mouth of individual rivers, also
called sub-estuaries, feeding into the parent estuary.

Salt-wedge estuaries are classified by an R/V ratio exceeding unity. The surface
water has small salinities along the entire length of the estuary and this becomes
largely undiluted exported into the adjacent sea. A wedge of salty oceanic water is
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found underneath the low-salinity water water. Except for the sharp density interface
between the surface and bottom layers, there are little salinity differences in each of
the layers. Examples of salt-wedge estuaries include the world’s mightiest rivers, the
Conga, Amazon, and Mississippi Rivers, but this type of estuary can also develop
in much smaller rivers.

Highly stratified estuaries are classified by a slightly smaller R/V ratio of val-
ues >0.1. Here, substantial amounts of saltier water are entrained into the surface
layer outflow, such that both salinity and flow rate of this outflow increase along the
length of the estuary. The bottom layer consists of largely undiluted seawater, but
the loss of saline water to the surface layer implies a continuous bottom inflow of
seawater from the adjacent sea. The Hardanger Fjord in Norway, for example, turns
seasonally into a highly stratified estuary whereby the freshwater source is provided
by summertime melt of glaciers. Constrained by the existence of a sill, however,
the inflow of seawater is often not dense enough to replenish bottom waters of a
fjord. As a consequence of this, bottom waters can become depleted in dissolved
oxygen (anoxic) as dead organic matter decays in the bottom layer. In some fjords,
this situation can last for several years.

A further decrease of the R/V ratio to values >0.01 leads to establishment of
slightly stratified estuaries. The relative influence of tidal mixing is enhanced and,
in contrast to entrainment being a one-way process, this creates mixing between
both layers. Hence, the salinity increases in both layers along the length of the
estuary with a top-to-bottom salinity difference remaining approximately constant.
Examples of slightly stratified estuaries include Chesapeake Bay situated in the
north-western Atlantic Ocean. Maximum river flow in the spring supports a stronger
density interface preventing the fresh surface water and saltier bottom water from
mixing. Owing to severe shortage of dissolved oxygen, major kills of commercially
important bottom-dwelling animals occur during this time.

Positive R/V values <0.001 characterise a situation in which tidal mixing is
strong enough to suppress density stratification most of the time. This regime
characetrises vertically mixed estuaries. Salinity at any point of the estuary is almost
uniform from surface to bottom and salinity increases from head to mouth of the
estuary. The Bay of Fundy is an example of a vertically mixed estuary.

Finally, a negative R/V ratio corresponds to a net water loss of an estuary which
is characteristic of inverse estuaries. Examples of inverse estuaries are Spencer Gulf
and Gulf St. Vincent in South Australia.

3.23.9 Transport Timescales in Estuaries

Owing to high human population density, most estuaries are subject to various
kinds of pollution such as discharges of sewage and other wastewater, or oil spills.
Hydrodynamic models are frequently applied to study the dilution and dispersal of
pollutants in estuaries. Various timescales have been introduced by scientists for this
purpose. These timescales are briefly described in the following.
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Residence time is the time it takes for a virtual water parcel to escape from a given
area. Particle-tracking methods, using Lagrangian floats such as in Exercise 9, are
used to calculate this timescale. For the circulation shown in Fig. 3.51, for instance,
the residence time of a water parcel released at point A is the time it takes until it
reaches the exit boundary at point B. In this sense, a map of residence times can be
constructed for the entire region of interest. With consideration of parcels entering
the region from outside, it is also possible to calculate a mean transit time including
standard variation for a region of interest. Knowledge of residence times are useful
for management of oil spills and identification of “shadow” regions of little flow.

Flushing time is the time it takes for the water volume of a given region to be
(almost) fully replaced by ambient water. Flushing times are computed using Eule-
rian tracer fields such as in Exercise 9. To this end, tracer concentrations of unity are
initially allocated to the region of interest whereas concentrations are kept at zero
value outside during the simulation. Flushing times can then be estimated as the
time is takes until concentration has dropped below a certain threshold value usually
taken at exp (−π ) ≈ 0.04. This implies that a region is considered flushed when
about 96% of its initial water has been replenished with waters from a pre-defined
source region. The resultant flushing time distribution depends on the start time of
the simulation. Distributions of flushing times are useful to illustrate regions that
are relatively stagnant. For the situation displayed in Fig. 3.51, for example, we can
anticipate delayed flushing along the coastal zones and inside the centre of the eddy
in Fig. 3.51.

Age of a virtual water parcel or water volume is the time elapsed since it
has entered the system (Deleersnijder et al., 2001). When formulated by means
of Lagrangian floats, age tracking is similar to the calculation of residence time.
When using a large number of floats, which can be computationally “expensive”,
the Lagrangian method reveals age distributions within a grid cell as a function of
both location and time. Nevertheless, water age is usually calculated from Eulerian
concentration fields according to the modified advection-diffusion equation:

∂ A

∂t
+ Adv(A) = Diff(A) + 1 (3.82)

Fig. 3.51 Schematic for
explanation of residence time
and flushing time. Shaded
areas represent regions of
delayed flushing
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where A is grid-averaged age, Adv(A) and Diff(A) denote the advection and dif-
fusion terms, and the constant unity represents ageing. In a semi-enclosed body of
water such as an estuary, entrainment of younger ambient seawater leads to estab-
lishment of an equilibrium age distribution (see Fig. 3.52). As flushing times, the
spatial distribution of age indicates the marine connectivity in a region of interest.
The advantage of predicting age rather than flushing time is that it does not require
any threshold value and that it allows for continuous prediction without the need to
restart the model in different seasons of the year.

Fig. 3.52 Entrainment of
younger water leads to
establishment of a steady
value of age

3.24 Exercise 14: Positive Estuaries

3.24.1 Aim

The aim of this exercise is to simulate the circulation and density structure of a
positive estuary subject to varied magnitudes of freshwater inflow and exposed to
tidal flows of a given tidal range. To make the simulation more realistic, variable
channel width is implemented in the vertical ocean-slice model.

3.24.2 Task Description

We consider a river channel of 120 km in length and 50 m in width opening up to
the sea (Fig. 3.53). The channel’s sidewalls are for simplicity vertical. The channel
widens to 500 m at its opening to the sea. Channel depth increases linearly from 5 to
20 m from head to mouth. We can employ the 2d vertical ocean slice model with a
few modifications (see below) under the assumption that the flow is uniform across
the channel width. A vertical grid spacing of 1 m together with a horizontal grid
spacing of 2 km are used.
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Fig. 3.53 Exercise 14. Model
configuration. The freshwater
inflow is characterised by a
certain freshwater volume R.
Tides are related to a certain
tidal volume V. See text for
explanation

Initially, density in the domain is set to an oceanic value of 1,027 kg/m3. Fresh-
water of a density of 1,000 kg/m3 is prescribed throughout the entire water column
near the head of the estuary. Sea level variations, forcing the model, are prescribed
at both ends of the channel according to:

ηhead = δ [ηriver − ηtide sin {2π (t + to)/T }]
ηmouth = −ηtide sin (2π t/T )

where the tidal amplitude (half the tidal range) is kept at a value of ηtide = 0.25 m,
tidal period T is taken as 12 hrs, to is a phase difference of tidal amplitudes between
head and mouth, taken as 30 min, and ηriver denotes the elevation of the river above
sea level that drives freshwater into the estuary. The latter is varied between 0.01 and
0.5 m. The δ parameter is gradually adjusted from zero to unity over the initial 6 hrs
of simulation. This is required to avoid the creation of unwanted initial disturbances
of the form of long surface gravity waves. The resultant tidal flows create a tidal
range of 0.5–1 m along the channel. Zero-gradient conditions are used for all other
variables at open boundaries. As in Exercise 3, the sea-level variations imposed are
converted to dynamic pressure variations.

An advanced diagnostic turbulence scheme, first proposed by Pacanowski and
Philander (1981), is adopted for calculation of eddy viscosity and eddy diffusivity.
Details are given below. Horizontal eddy viscosity/diffusivity is set to a uniform
value of 0.1 m2/s and a bottom friction parameter of r = 1 × 10−3 is used.

Additionally, water age is calculated using Eq. (3.83) to identify regions sensitive
to oxygen depletion. Initially, water age is set to zero in the entire model domain.
There are two main oxygen sources in an estuary: fluxes across the sea surface and
inflow of well-oxygenated water from the ambient sea. To capture these sources,
age is kept at zero values in all surface grid cells and outside the mouth of the
estuary.

The total simulation time of experiments is 20 days. In addition to snapshot out-
puts on a two-hourly basis, the author decided to include outputs of data averaged
over each tidal cycle. The numerical time step is set to 20 secs. A pressure accuracy
of ε = 10−3 Pa is used for the S.O.R. scheme.
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3.24.3 Implementation of Variable Channel Width

The width b of the channel varies only in the x-direction and not with depth.
Wu (2007) presents dynamical equations for more complex river shapes. Hori-
zontal and vertical velocities are width-averaged across the channel. Under these
assumptions, the momentum equations and advection-diffusion equation for scalars
remain the same except for a modification of the diffusion term. This term is now
given by:

Diff(ψ) = 1

b
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)
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where ψ is a substitute for variables, b(x) is channel width, and K represents either
eddy viscosity in the momentum equations or eddy diffusivity for scalars. The con-
tinuity equation for the width-averaged flow can be written as:

∂(b u)

∂x
+ ∂(b w)

∂z
= 0 (3.84)

and vertical integration leads to:

∂η

∂t
= −1

b

∂(b h 〈u〉)
∂x

(3.85)

where 〈u〉 is horizontal flow velocity averaged over both depth and width of the
channel. Owing to the appearance of channel width in the continuity equation, coef-
ficients in the S.O.R. scheme (see Sect. 3.4) are now given by:

ae = be Δz/Δx , aw = bw Δz/Δx , at = bk Δx/Δz , ab = bk Δx/Δz

where

be = 0.5 (bk + bk+1) and bw = 0.5 (bk + bk−1)

Accordingly, the source term on the right-hand side of (3.24) is given by:

q∗
i,k = ρo

Δt

[(
be u∗

i,k − bw u∗
i,k−1

)
Δz + bk

(
w∗

i,k − w∗
i+1,k

)
Δx

]
(3.86)

3.24.4 Advanced Turbulence Closure

The vertical mixing scheme by Pacanowski and Philander (1981) is a sole function
of the Richardson number (Eq. 3.61). This scheme has been developed for tropical-
ocean applications, but we take the freedom to adopt this scheme for this exercise.
Vertical eddy viscosity is calculated from
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Az = ν1

(1 + 5 Ri)2
+ νo (3.87)

with ν1 = 5×10−3 m2/s and νo = 5×10−4 m2/s. Eddy diffusivity is parameterised
as:

Kz = Az

(1 + 5 Ri)
+ ko (3.88)

where ko is set to 1 × 10−5 m2/s. For the calculation of the Richardson number it
is useful to recall that, with use of the Arakawa C-grid, eddy viscosity/diffusivity
values are determined at scalar grid points which are centred between velocity grid
points. To this end, the Richardson number is derived from:

Rin
i,k = −2Δz

g

ρo

(ρn
i−1,k − ρn

i+1,k)

(ut − ub)2
(3.89)

where

ut = 0.5(un
i−1,k + un

i−1,k−1) and ub = 0.5(un
i+1,k + un

i+1,k−1)

There is no need to account for convective mixing in this exercise.

3.24.5 Results

The tidal volume flux is about 1.4 m3/s per unit width of the estuary for all forc-
ing cases. The choice of ηriver = 1 cm leads to an R/V ratio of 0.01 and therefore
corresponds to a vertically-mixed estuary (Fig. 3.54, top panel). The brackish water
zone does not reach far into the estuary and the transition zone between freshwater
and seawater occupies only a width of 10–15 km. The lack of density stratification
provides a means of oxygen supply (also called ventilation) via surface fluxes over
the entire length of the estuary.

In contrast, an increased value of ηriver = 30 cm, corresponding to an R/V ratio of
1.9, creates a salt-wedge estuary characterised by a freshwater surface layer extend-
ing the entire length of the estuary and spilling into the ambient sea (Fig. 3.54,
bottom panel). In this situation, the brackish water zone is located closer to the estu-
ary mouth, which enables relatively rapid ventilation of the bottom layer through
the baroclinic return flow despite the existence of strong density stratification.

Forcing with ηriver = 5 cm gives an R/V ratio of 0.16 and leads to the estab-
lishment of a highly stratified estuary (Fig. 3.55, top panel). Saltier bottom water
is entrained into the surface outflow. Owing to turbulence reduction via density
stratification, bottom layers attain an age of 13–14 days (Fig. 3.55, bottom panel),
which is an indication that oxygen depletion might occur in this zone. Discharge of
pollutants should be avoided in such regions of little ventilation.
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Fig. 3.54 Exercise 14. Tidally averaged density distribution (shading and contours) after 20 days
of simulation for different forcing cases. Arrows display averaged flow vectors

Fig. 3.55 Exercise 14. Results for a highly stratified estuary. Top panel: Tidally averaged den-
sity distribution (color shading and contours). Blue (red) shading denotes freshwater (seawater).
Bottom panel: Distribution of water age (days). Arrows display averaged flow vectors

3.24.6 Additional Exercises for the Reader

The reader is encouraged to add some bathymetric variations to the sea floor
(such as a sill near the estuary’s mouth) and to explore changes in both the
dynamics and water age distributions. The reader should also try to calculate
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flushing times based on an e-folding timescale and to compare the results with the
predicted age distribution.

3.25 Exercise 15: Inverse Estuaries

3.25.1 Aim

The aim of this exercise is to explore the circulation of inverse estuaries being caused
by a net evaporative loss of water. Since this loss of water creates a pressure gradient
directed into the estuary, the question is: What drives the outflow (see Fig. 3.50, right
panel)?

3.25.2 Task Description

The model configuration is identical to that of the previous exercise with a few
modifications outlined in the following. The estuary is closed on the left side and,
for simplicity, tidal forcing is not included. An evaporation rate of 5 cm per day
(which is fairly high) is prescribed along the estuary up to x = 110 km. This rate
is decreased linearly to zero value over the the adjacent 20 km across the mouth of
the estuary. Evaporation over the ambient sea is set to zero. This design is purely
academic and its sole purpose is to create a salinity distribution along the estuary
that resembles that observed in real inverse estuaries.

Evaporative water loss appears in the vertically integrated continuity equation as:

∂η

∂t
= −1

b

∂(b h 〈u〉)
∂x

− E (3.90)

where E is the evaporation rate. Owing to a loss of freshwater, the salt concentration
(i.e. salinity) in the water column increases. On the basis of conservation of volume
and salt mass, this salinity change can be calculated from:

∂S

∂t
= S

E

h
(3.91)

where h is the depth over which this salinity increase becomes distributed. We use
a linearised equation of state expressed in terms of density anomaly ρ ′:

ρ ′ = ρoβ(S − So) (3.92)

where temperature effects are ignored, the salinity coefficient β is taken as 8×10−4,
and So is a reference salinity, taken as 35 g/kg. Accordingly, Eq. (3.91) can be con-
verted into a density change according to:
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∂ρ ′

∂t
= (

ρoβSo + ρ ′) E

h
(3.93)

In the model, this density change is distributed in the uppermost grid cell (h =
Δz). Convection by unstable density stratification can mix this salinity anomaly
to deeper layers. Owing to coarse grid spacing, convective mixing needs to be
parameterised. This is done here via an increase of eddy diffusivity to a value of
kz = 0.01 m2/s. The total simulation time is 20 days. The evaporative forcing is
applied only for the first 10 days and thereafter disabled. Reasons for this treatment
will become obvious with inspection of the results.

3.25.3 Results

Due to evaporation, salinity increases toward the head of the estuary, as anticipated
(Fig. 3.56, top panel). Maximum density anomalies are 3 kg/m3, which converts
to a salinity anomaly of 3.65 g/kg, using Eq. (3.92). Surprisingly, an overturning
circulation as sketched in Fig. 3.50 (right panel) does not establish during times
of evaporation. Instead, there is only a weak depth-independent (barotropic) flow
running into the estuary and replacing the water volume lost through evaporation.

The lack of baroclinic flow is contrary to the anticipation that the salinity increase
and, hence, density increase in an inverse estuary directly drives a hypersaline
bottom outflow. This does not happen during the first 10 days of simulation here
because the evaporative water loss in the estuary creates a barotropic pressure gra-
dient directed into the estuary which operates to override any density effects. In
this situation, the barotropic inflow manages to balance both the water loss and the
salinity increase associated with evaporation.

Fig. 3.56 Exercise 15. Density distributions (shading and contours) after 10 and 20 days of simu-
lation. Arrows display averaged flow vectors
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On the other hand, with disappearance of the evaporative forcing, inertia leads to
rapid levelling out of the sea level while lateral density gradients remain. Baroclinic
pressure gradients are left behind and now can create the outflow of hypersaline
bottom water into the ambient sea (Fig. 3.56, bottom panel). The sea level in the
estuary drops owing to this outflow and triggers an intensified inflow in the surface
layer. Findings of this exercise indicate that the circulation in inverse estuaries is
intermittent and responds rapidly to variations in evaporation rates.

3.25.4 Additional Exercise for the Reader

Describe a temporally varying evaporation rate according to:

E(t) = Eo [1 − cos (2π t/T )]

where Eo = 5 cm/day. Vary the period T between 1 and 10 days and explore the
resultant exchange circulations.



Chapter 4
2.5D Vertical Slice Modelling

Abstract This chapter introduces the reader to 2.5-dimensional modelling in a ver-
tical ocean slice which allows for inclusion of the Coriolis force. Exercises address
geostrophic adjustment of density fronts, coastal upwelling and Ekman pumping.
The last exercise of this chapter explains the curiosity that winds can create flows in
the ocean running opposite to the wind direction.

4.1 The Basis

4.1.1 Adding Another Half Dimension

Elongated dynamical features being influenced by the Coriolis force, such as oceanic
fronts, can be described to first-order approximation by the dynamics in a vertical
ocean slice with vanishing gradients of all variables normal to this slice (Fig. 4.1).
This approach is called the 2.5-dimensional vertical ocean-slice model.

4.1.2 The Geostrophic Balance

Processes considered in this section involve the Coriolis force. Therefore, we briefly
revisit the fundamentals of flows dominated by a balance between the Coriolis
force and the horizontal pressure-gradient force; that is, the geostrophic balance.
The momentum equations for pure geostrophic flow in Cartesian coordinates are
given by:

− f vgeo = − 1

ρ

∂ P

∂x
(4.1)

+ f ugeo = − 1

ρ

∂ P

∂y
(4.2)

where f is the Coriolis parameter (see Sect. 2.1). Geostrophic flows run along lines
of constant pressure, called isobars. With inclusion of the hydrostatic balance, which
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Fig. 4.1 The 2.5d vertical ocean slice

is valid for shallow-water processes (i.e. processes of a horizontal scale exceeding
their vertical scale by far), the latter equations can be formulated as:

∂vgeo

∂z
= + g

ρ f

∂ρ

∂x
(4.3)

∂ugeo

∂z
= − g

ρ f

∂ρ

∂y
(4.4)

These relations, called the thermal-wind equations, imply that geostrophic flow
displays a vertical shear in the presence of lateral density gradients. In oceanogra-
phy, the application of the thermal-wind equations for derivation of the baroclinic
geostrophic flow field from density measurements is called the geostrophic method.
See Pond and Pickard (1983) for a detailed description of this method.

Geostrophic surface currents, not captured by the geostrophic method, follow the
relationships:

− f vgeo = −g
∂η

∂x
(4.5)

+ f ugeo = −g
∂η

∂y
(4.6)

and run along lines of the same sealevel elevation. Sea-level anomalies derived from
satellite altimetry can therefore be used to map the surface circulation of the ocean.
In the case of uniform density, the latter equations describe depth-independent
geostrophic flow.

The beta-plane approximation describes departures of the Coriolis parameter
from a constant value and is given by:

f = fo + βy (4.7)

where β is the meridional variation of the Coriolis parameter with a value of β =
2.2 × 10−11 m−1s−1 at mid-latitudes, and y is the distance in metres with respect
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to the centre of the Cartesian coordinates system defining fo. Note that y becomes
negative for locations south of this centre.

Horizontal divergence of geostrophic flow is given by:

∂ugeo

∂x
+ ∂vgeo

∂y
= −β

f
vgeo (4.8)

On small spatial scales <100 km, this divergence is negligibly small. As a conse-
quence of this, barotropic geostrophic flow tends to follow bathymetric contours –
a feature referred to as topographic steering. On larger scales of ocean basins
(∼1,000 km), meridional (north–south) flow creates a small divergence that plays
an important role in the wind-driven circulation of the oceans balancing the wind-
induced flow divergence in the surface Ekman layer. This balance is known as the
Sverdrup balance.

4.1.3 Scaling

The temporal Rossby number, defined by Eq. (2.7), compares the inertial period
with the time scale of a time-variable process. Coriolis effects become important for
a temporal Rossby number of values less than unity or, in other words, if the time
scale of a process exceeds the inertial period. Stationary processes, on the other
hand, are controlled by the Coriolis force if the Rossby number (without prefix) is
small compared with unity. The Rossby number is defined by:

Ro = U

f L
(4.9)

where U is characteristic flow speed, f is the Coriolis parameter, and L is a char-
acteristic length scale. The relevant time scale is given by L/U which is the time it
takes for flow to carry a parcel over a characteristic distance.

Calculations of Rossby numbers for previous exercises reveals that the Coriolis
force could be neglected in most instances. The focus of the following exercises is
placed on stratified processes that are influenced or even controlled by the Coriolis
force.

4.1.4 Conservation of Potential Vorticity

Vorticity is the ability of flow to produce rotation. Frictionless flow that is almost in
a geostrophic balance is called quasi-geostrophic flow. For a layered ocean, it can
be shown that quasi-geostrophic flow conserves a quantity called potential vorticity.
This statement is valid along flow trajectories and reads (Cushman-Roisin, 1994):

f + ξi

hi
= constant (4.10)
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where hi is the thickness of a layer, and relative vorticity is given by:

ξi = ∂vi

∂x
− ∂ui

∂y
(4.11)

In this context, the Coriolis parameter f is referred to as planetary vorticity. It is
obvious from this principle that localised water-column stretching or squeezing can
produce swift geostrophic flow disturbances.

4.1.5 Geostrophic Adjustment

Consider a situation of a surface layer of initial thickness h1 and reduced density Δρ

that occupies only a part of the domain in the x-direction but stretches to infinity in
the y-direction (Fig. 4.2). The water column underneath this surface layer has an
initial thickness of h2. Obviously, this situation cannot persist at infinitum given the
existence of a lateral pressure-gradient force that initially operates to draw ambient
water under the lower-density surface layer. Convergence associated with this inflow
creates a sea-level gradient that forces the surface layer in the positive x-direction.
This lateral spreading, however, comes to a halt when the Coriolis force balances the
lateral pressure gradient force. The result of this geostrophic adjustment is a density
front (i.e. a zone of maximum density gradients) characterised by swift geostrophic
flow along the frontal axis and little flow across.

On the basis of conservation of potential vorticity and the case of a relatively thin
surface layer (h1 << h2), it can be shown that the width of the resultant frontal zone
is given by the internal Rossby radius of deformation, defined by:

R =
√

g′h1

| f | (4.12)

It can be shown that the surface frontal geostrophic jet attains a speed of:

∣∣vgeo

∣∣ =
√

g′h1 (4.13)

Fig. 4.2 Illustration of the geostrophic adjustment process
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The speed of frontal flows decreases exponentially (on a spatial scale of R) with
increasing distance from the surface outcrop of density surfaces. In the general case,
a counterflow establishes in the water column underneath a surface density front.
Density fronts in the coastal ocean attain typical widths of 1–20 km.

4.1.6 The 2.5d Shallow-Water Model

On the basis of vanishing gradients of variables in the y-direction and inclusion of
the Coriolis force, the horizontal momentum equations for a vertical ocean slice can
be written as:

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
− f v = − 1

ρo

∂(p + q)

∂x
+ Diff(u) (4.14)

∂v

∂t
+ u

∂v

∂x
+ w

∂v

∂z
+ f u = Diff(v) (4.15)

where f is the Coriolis parameter and Diff(ψ) is the diffusion operator, being spec-
ified in Sect. 3.15. The other model equations are the same as in Exercise 12.

4.1.7 Implementation of the Coriolis Force

In the 2.5d version of the Arakawa C-grid, the v-components of velocity are calcu-
lated at pressure grid points (see Fig. 3.3). Hence, interpolation of velocity values
is required for calculation of the Coriolis force. It can be shown that explicit for-
mulation of the Coriolis force is numerically unstable. The nonhydrostatic solver of
the Navier-Stokes equations is already formulated in an implicit manner in terms
of dynamic pressure (see Sect. 3.4). Using another semi-implicit approach for the
Coriolis force would lead to an even more complex solver. To avoid this, the Coriolis
force is treated here by the local-rotation approach (described in Sect. 3.14 of Kämpf
(2009)). With the sole presence of the Coriolis force, this approach leads to the
finite-difference equations:

un+1 = cos(α)un + sin(α)vn,

vn+1 = cos(α)vn − sin(α)un

where the rotation angle is α = 2 arcsin (0.5Δt f ). For sufficiently small numerical
time steps of Δt | f | << 1, this can be approximated by α ≈ Δt f . With inclusion of
other forces, this approach can be added to the first-guess of velocity components,
yielding:
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u∗
i,k = cos (α)un

i,k + sin (α)vn
u + Δt Fn

u

vn+1
i,k = cos (α)vn

i,k − sin (α)un
v + Δt Fn

v (4.16)

w∗
i,k = wn

i,k + Δt Fn
w

where α = Δt f , uv are u-values interpolated to v grid points, vu are v-values
interpolated to u grid points, and the remaining terms are given by:

Fn
u = − 1

ρoΔx
(qn

i,k+1 − qn
i,k) − Adv(u) + Diff(u)

Fn
v = −Adv(v) + Diff(v) (4.17)

Fn
w = − 1

ρoΔz
(qn

i−1,k − qn
i,k) − Adv(w) + Diff(w)

where Adv(ψ) denotes the nonlinear terms. As before, the first-guess arrays u∗ and
w∗ are input to the right-hand side of the Poisson equation (Eq. 3.25) to be solved
by means of the S.O.R. iteration scheme.

4.1.8 Potential Problems

The step structure of the sea floor in z-coordinate models gives rise to a number of
potential problems, summarised in the following.

• Each bottom step acts like an impermeable boundary and flows can only climb or
descent these steps via creation of vertical velocity. For gravity currents cascad-
ing downward on the slope, this implies artificial situations of unstable density
stratification.

• The condition of no flow through a vertical face of a bottom step requires use
of zero-gradient conditions for dynamic pressure across this face. This, however,
implies absence of geostrophic flow running parallel to a bottom step, which can
substantially disturb the near-bottom geostrophic flow field.

• In the Arakawa C-grid, calculations of both the Coriolis force and bottom-stress
terms require interpolation of surrounding velocity components (see Fig. 3.3).
Discontinuities in vicinity of bottom steps lead to a bias in the dynamics.

• Vertical friction operates on horizontal section of the sea floor, whereas lateral
friction occurs at vertical faces of bottom steps. The use of different values
of horizontal and vertical turbulent viscosities creates dynamical irregularities.
This can be avoided when disabling lateral momentum diffusion near bottom
steps.
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• Step structures of the sea floor are block-type obstacles for the vertically inte-
grated continuity equation. This leads to a bias of the dynamics of gravity waves
via partial reflection.

These shortcoming, arising when using z-coordinate models, are unfortunate and
can only be avoided with the choice of other coordinate systems (such as sigma-
coordinate models) or model types (such as layer models).

4.2 Exercise 16: Geostrophic Adjustment

4.2.1 Aim

This exercise employs the 2.5d vertical ocean-slice model to study geostrophic
adjustment of a surface density front of infinite length.

4.2.2 Task Description

We consider a model domain, 50 km in length and 500 m in depth, resolved by a
lateral grid spacing of Δx = 500 m and a vertical grid spacing of Δz = 10 m.
Lateral boundaries are closed. An isolated surface layer of 10 km in width and 250 m
in thickness is initially placed in the centre of the model domain (Fig. 4.3). This layer
is lighter compared with the ambient ocean in which the density is ρ = 1,028 kg/m3.
The density anomaly of the surface layer is linearly adjusted from zero to a final
value of 0.1 kg/m3 over the first 6 hrs of the simulation. No further forcing is applied
afterward and the dynamics can evolve freely.

Small uniform isotropic values of 1×10−4 m2/s are used for both eddy diffusivity
and eddy viscosity. The bottom friction parameter is set to r = 0.001. The total
simulation time is 60 hrs with hourly data outputs. The time step is set to Δt = 5 s.
The model includes a freely moving sea surface. The pressure accuracy of the S.O.R.
scheme is set to ε = 0.01 Pa. Two scenarios are considered. Rotational effects are
ignored in the first scenario by setting the Coriolis parameter to zero. The second
scenario uses a mid-latitude value of the Coriolis parameter of f = 1 × 10−4 s−1

(Northern Hemisphere).

Fig. 4.3 Initial configuration for Exercise 16
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4.2.3 Results

Without the Coriolis force, the low-density surface layer spreads laterally towards
the ends of the channel (Fig. 4.4). According to theory (Eq. 3.48), the density
fronts should propagate at a speed of 50 cm/s, which agrees reasonably well with
the simulation. Frontal flows become reflected at the closed lateral boundaries and
meet again in the centre of the model domain after 50 min. As a consequence of
volume conservation, initial outward spreading of the surface layer is compensated
by inward currents in the water column underneath. In a steady state, the low-surface
density layer will cover the entire domain and the currents will eventually come to
rest.

Circular ocean eddies are largely geostrophic. Although the 2.5d ocean slice
model does not capture three-dimensional features, results shown in the following
are analog to those of a vertical section cutting through the centre of a symmetrical
ocean eddy. Accordingly, the patterns discussed below can be interpreted as cyclonic
or anticyclonic vortices. A cyclonic eddy has a low-pressure centre, whereas an
anticyclonic eddy is characterised by a high-pressure centre.

The initial lateral spreading of the density front ceases under influence of the
Coriolis force. Instead of continued spreading, lateral pressure gradients create
geostrophic flow that run parallel to the density fronts and not across. As a con-
sequence of this, the low-density surface layer remains confined in horizontal
extent (Fig. 4.5). The simulated width of the frontal zone agrees well with theory
noting that Eq. (4.12) predicts a value of 4.9 km. The frontal flow attains speeds of

Fig. 4.4 Exercise 16 (without Coriolis force). Evolution of the density distribution (shading) at
selected times of the simulation. Lines are contours of u with a contour interval of 0.05 m/s. Solid
(broken) lines denote positive (negative) speeds
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Fig. 4.5 Exercise 16 (with Coriolis force). Evolution of the density distribution (shading) at
selected times of the simulation. Lines are contours of v with a contour interval of 0.05 m/s. Solid
(broken) lines denote positive (negative) speeds

0.35 ± 15 cm/s. The time-averaged flow speed is slightly lower that the theoretical
value of 49 cm/s, derived from Eq. (4.13), presumably because of artificial lateral
diffusive smoothing of steep gradients in the sea level.

Interestingly, initial water-column stretching creates deep flows running opposite
to those establishing in the surface layer. This feature is important to remember for
studies of rotational exchange flows through oceanic straits, to be investigated in
Exercise 22.

It is obvious that temporal variations of flow speeds are the signature of inertial
oscillations. These oscillations lead to an oscillatory pattern alternating between
lateral stretching and shrinking of the low-density surface lens. The Coriolis param-
eter used corresponds to an inertial period is 17.5 hrs, which agrees well with the
prediction (not shown). The reader is encouraged to verify the latter statement. Over-
all, the 2.5d vertical ocean-slice model appears capable of successfully simulating
rotational effects incurred by the Coriolis force.

4.2.4 Additional Exercise for the Reader

Repeat this exercise, but place an isolated layer of denser water on the sea floor.
Explore the resultant evolution of the density field for different values (including
zero) of the bottom friction parameter.
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4.3 Exercise 17: Tidal-Mixing Fronts

4.3.1 Background

Tidal currents, if energetic enough, can trigger vertical mixing of the entire
water column. This tidal mixing only occurs in shallower regions of swift tidal flows,
whereas the density stratification in adjacent deeper portions of the sea and weaker
tidal flows remains stratified. A density front establishes as a consequence of this
differential mixing and marks the transition zone between stratified and unstratified
water (Fig. 4.6). The resultant horizontal pressure gradient force gives rise to flows
that, on time scales of several days, become subject to the geostrophic adjustment
process. The typical width of tidal-mixing fronts is a few kilometers.

Tidal-mixing fronts, such as those in the Irish Sea, are known for their enhanced
biologic productivity and they are generally rich in fish and seabird abundance. Bot-
tom water of the stratified regime contain typically more nutrients than surface water
and the mixed regime. It is believed that the flux of high-nutrient near-bottom water
from the stratified side of the front into the well-mixed region contributes to this
(Mann and Lazier, 1996). Most tidal mixing fronts only exist during the warmer
seasons of the year given that solar heating is required for establishment of thermal
stratification of the water column. Tidal mixing fronts are usually found closer to
the shore during spring tides than during neap tides.

The ratio between local water depth h and the cube of the average speed U of
tidal flows is often used as an indicator of the location of a tidal-mixing front (Mann
and Lazier, 1996). Advanced methods consider effects of intensified wind-induced
mixing and air-sea heat fluxes. A discussion thereof is beyond the scope of this
book.

Fig. 4.6 Schematic of the density distribution created by enhanced tidal mixing in shallower water

4.3.2 Task Description

The model domain is 10 km in length. Total water depth linearly decreases from
100 m at one side to 50 m at the other side of the domain (Fig. 4.7). Lateral bound-
aries are closed. The horizontal grid spacing is set to Δx = 100 m and a vertical
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Fig. 4.7 Initial configuration for Exercise 17

grid spacing of Δz = 2 m is used. Initially, the water column is stably stratified.
The surface mixed layer is 20 m thick and has a density of ρ = 1,027 kg/m3. The
density of seawater underneath is set to ρ = 1,028 kg/m3. Density fluxes across the
sea surface are neglected.

Instead of attempting to simulate tidal currents and the turbulence associated
with this, this exercise treats the creation of tidal-mixing fronts in a simplified man-
ner, as described in the following. Background values of vertical eddy viscosity
and eddy diffusivity of Az,b = Kz,b = 5 × 10−4 m2/s are prescribed in the entire
model domain. The effect of tidal mixing in shallower water is parameterised via
prescription of increased turbulence levels. To this end, enhanced turbulence levels
of maximum values of Az,max = Kz,max = 5 × 10−2 m2/s are prescribed in regions
shallower than 60 m. To mimic the tidal cycle, the latter is modulated on a semi-
diurnal period according to:

Az = Kz = Az,max |sin (2π t/T )| + Az,b

where t is time, and T is the forcing period. Linear interpolation of turbulent levels
is applied in a transition zone of 1 km in width. Horizontal eddy viscosity and eddy
viscosity are kept at a small uniform value of Ah = Kh = 1 × 10−4 m2/s. Quadratic
bottom friction is included with r = 0.001. The Coriolis parameter is set to f =
1 × 10−4 s−1 (mid-latitudes of the Northern Hemisphere). The total simulation time
is 24 hrs with data outputs at 15-min interval. The time step is set to Δt = 1.5 s, using
the free-surface version of the 2.5d vertical ocean-slice model. Pressure accuracy of
the S.O.R. simulation is set to ε = 0.001 Pa.

4.3.3 Results

Enhanced tidal stirring mixes the entire water column in shallower water whereas
density stratification remains in deeper regions of the model domain (Fig. 4.8). Sur-
face water of the mixed regime is denser compared with that in the nearby stratified
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Fig. 4.8 Exercise 17: Distributions of density anomaly relative to ρo = 1,027 kg m−3 (top panel),
u-component of velocity (middle panel), and v-component of velocity (bottom panel) after 24 hrs
of simulation

regime. Bottom water of the mixed regime is less dense than adjacent water of the
stratified regime. The resultant horizontal pressure gradients give rise to a three-
layer circulation. This consists of onshore flows in both surface and bottom layers
and offshore flow in the middle layer, the latter injecting water from the mixed
regime into the pycnocline of the stratified regime (see Fig. 4.8). Lateral injection
of water into the pycnocline continues throughout the simulation at speeds varying
between 5 and 10 cm/s. These onshore and offshore flows are directly driven by
lateral pressure gradients and, therefore, constitute ageostrophic components of the
circulation. The ageostrophic cross-shelf circulation intensifies during weak tidal
flows (parameterised in the model) and weakens during times of enhanced ambient
vertical mixing.

Geostrophic adjustment leads to a swift subsurface frontal geostrophic jet of
20 cm/s in speed in the middle layer. The direction of this flow is such that the
shallower water is located on its right-hand side in the Northern Hemisphere.
Weaker geostrophic flows of the opposite direction establish near both the sur-
face and the bottom. The resultant frontal zone has an approximate width of 3 km.
In the real situation, geostrophic jets of tidal mixing fronts (and other density
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fronts) tend to become dynamically unstable and break up into mesoscale eddies
inducing vigorous lateral mixing across the front. This cannot be simulated with the
2.5d model.

4.3.4 Additional Study

Prognostic advection-diffusion equations for Eulerian tracer concentration fields are
added to the code to quantify the sources of water that make up the frontal zone. To
this end, the author decided to use three separate tracer fields (Fig. 4.9). One field is
allocated an initial concentration of 100% in the well-mixed regime and zero values
elsewhere. The other two tracer fields mark the surface and bottom layers of the
stratified regime.

Fig. 4.9 Exercise 17: Initial distribution of three separate Eulerian tracer fields

4.3.5 Results and Discussion

After 24 hrs of simulation, the stratified regime has contributed 19% of near-bottom
water and 13% of near-surface water to the frontal zone (Fig. 4.10). The well-mixed
regime outside the front has contributed 23% to the frontal zone. The remainder
45% of water stems from other sources. The timescale of semi-diurnal tidal varia-
tions, mimicked here via variation of turbulence levels, is shorter than the inertial
period (which is about 17.5 hrs for the model configuration), so that the geostrophic
adjustment process remains incomplete. Instead of this, each period of enhanced
tidal stirring is followed by a phase of gravitational adjustment. During this process,
surface and bottom water of the stratified regime are displaced a few kilometers
closer to the shore and previously mixed water becomes drawn into the pycnocline
of the stratified regime. The result of this gravitational adjustment is a pumping
of both surface and bottom water from the stratified regime into the frontal zone.
Convergence-induced upwelling of near-bottom water supports this process (see
middle panel in Fig. 4.10). Findings, shown here, confirm the injection of nutrient
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Fig. 4.10 Exercise 17: Distributions of the three Eulerian tracer fields after 24 hrs of simulation

enriched bottom water from the stratified side of the front into the frontal zone as
stimulus of biologic production.

4.3.6 Additional Exercises for the Reader

Repeat this exercise with an initial density difference between the top and the bottom
layers of Δρ = 2 kg m−3, which is twice that used before, and explore the features
of the resultant tidal mixing front and associated flows.

4.4 Coastal Upwelling

4.4.1 Background

Coastal upwelling is a process by which colder and often nutrient-enriched water is
lifted closer the sea surface where increased light intensity promotes the production
of phytoplankton – a key trigger of the marine food chain.
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4.4.2 How Does It Work?

Coastal upwelling is created by winds blowing along the coast such that the sur-
face Ekman drift is directed offshore. This offshore movement lowers the coastal
sea level and produces a coastal geostrophic jet running into the same direction as
the wind. Friction of this flow with the seabed creates onshore flow in the bottom
Ekman layer and upward movement occurs in vicinity of the coast. The upward tilt
of density surfaces near the coast, however, reduces lateral pressure gradients in the
bottom layer. This partial compensation of the imposed surface pressure field in the
ocean interior, called baroclinic compensation and sometimes referred to as buoy-
ancy shutdown (Chapman, 2002), weakens the geostrophic flow near the bottom and
thus the onshore flow in the bottom Ekman layer.

4.4.3 Partial and Full Upwelling

Consider a coastal ocean consisting of two superimposed layers of different densi-
ties. Full upwelling refers to a situation in which the density interface has reached
the surface and forms a density front that is displaced offshore leaving upwelled cold
water exposed at the surface (Fig. 4.11). Partial upwelling occurs for a brief or weak
wind event such that the interface has upwelled but not to the point of reaching the
surface.

The reduced-gravity concept for a two-layer fluid is based on the assumption
that the density interface between the layers adjusts such to sea-level gradients that
horizontal pressure gradients and hence the flow vanishe in the bottom layer. The
reduced-gravity concept implies that:

P2 = 0 = ρ1 g η1 + (ρ2 − ρ1) g η2

where ρ1 and ρ2 are densities of the top and bottom layers, η1 is surface elevation,
and η2 is the elevation of the density interface. This leads to a relation between
sea-level elevations and interface displacements according to:

η1 = −ρ2 − ρ1

ρ1
η2

Fig. 4.11 Illustration of the coastal upwelling process (Northern Hemisphere). Adapted from
Cushman-Roisin (1994)
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Oceanographers frequently use this relation to estimate slopes of the sea level,
driving the surface geostrophic flow, from the observed slope of the pycnocline. On
the other hand, the thickness of the surface mixed layer is given by:

h = ho + η1 − η2

where ho is the undisturbed thickness. Given that the magnitude η2 typically exceeds
that of η1 by far, the barotropic pressure gradient can be formulated according to the
reduced-gravity concept as:

−g
∂η1

∂x
= −g′ ∂h

∂x

where reduced gravity is defined by g′ = (ρ2 − ρ1)/ρ2g. Using the reduced-gravity
concept for a two-layer ocean, the offshore distance a of the outcrop of the density
interface for full upwelling can be estimated from (see Cushman-Roisin, 1994):

a = I

| f | − R (4.18)

where R = √
g′h1/ | f | is the internal Rossby radius of deformation, and the

so-called “wind impulse” is defined by:

I = 1

ρoh1

∫
event

τ dt

with τ being the alongshore component of upwelling favorable wind stress. When
averaging this wind-stress component over a certain time span t∗, the latter equation
can be expressed as:

I = 〈τ 〉
ρoh1

t∗

According to Eq. (4.18), the transition between partial and full upwelling occurs
when:

I = | f | R

The latter two equations can be combined to yield an estimate of the time span it
takes for full upwelling to develop; that is,

t∗ = ρoh1

√
g′h1

〈τ 〉 (4.19)

The width of a fully developed upwelling front is of the order of the internal
radius of deformation R (Cushman-Roisin, 1994).
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4.4.4 The Upwelling Index

The upwelling index can be used as an indicator and measure of coastal upwelling
events. This index is an estimate of the magnitude of offshore transport in the surface
Ekman layer and it is calculated from:

Upwelling index =
∣∣τwind

∣∣ cos (α∗)

| f | ρo
(4.20)

where τwind is the wind-stress magnitude, and α∗ is the relative angle between
wind direction and coastline orientation. The upwelling index carries units of square
metres per second, which refers to a volume transport in cubic metres per second per
unit length of the coastline. In contrast to coastal upwelling, coastal downwelling
refers to a situation in which the Ekman drift pushes surface water against the coast
and which corresponds to negative values of the upwelling index.

4.5 Exercise 18: Coastal Upwelling and Downwelling

4.5.1 Aim

The aim of this study is to explore the wind-driven coastal upwelling process in a
stratified water column with the 2.5d vertical-ocean slice model.

4.5.2 Task Description

The model domain is 50 km in length, resolved by a horizontal grid spacing
of Δx = 500 m, and has a maximum depth of 100 m, resolved by a vertical grid
spacing of Δz = 5 m (Fig. 4.12). The water depth decreases from 100 to 50 m along
the length of the model domain. Shallow water is bounded by a coast. The offshore
lateral boundary is treated as an open boundary using zero-gradient conditions for
all variables except for sea-level elevation. To avoid that the model domain empties

Fig. 4.12 Initial configuration for Exercise 18
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over time under continuous offshore Ekman transport, the sea level at the open
boundary is kept at its initial value throughout the simulation.

The surface-mixed layer is initially 25 m thick and of a density of 1,027 kg/m3.
A pycnocline is situated at the base of this layer across which density changes by
1 kg/m3. This corresponds to a local stability frequency of N = 4.4 × 10−2 s−1.
Density is assumed to increase with depth underneath the pycnocline with a stability
frequency of N = 6.2 × 10−3 s−1. The Coriolis parameter is set to f = −1 ×
10−4 s−1, representing mid-latitudes in the Southern Hemisphere. Recall that, in the
Southern Hemisphere, the net wind-driven water movement in the surface Ekman
layer is at right angle and to left with respect to the wind direction.

Horizontal eddy viscosity and eddy viscosity are set to a constant value of Ah =
Kh = 1 m2/s. Vertical eddy viscosity and diffusivity, assumed to be equal, are diag-
nosed from an advanced turbulence closure scheme, described in the next section.
A value of Kz = Az = 0.05 m2/s is prescribed near the surface to mimic the imme-
diate effect of wind mixing. Ambient background values of Az,min = Kz,min =
1×10−4 m2/s are used. The bottom friction parameter (assuming a quadratic bottom-
friction law) is set to r = 0.003.

The model is forced via prescription of a alongshore wind stress of the form:

τwind
y = τo sin (2π t/T ) (4.21)

where t is time, and the period T is chosen as 10 days, being characteristic for
synoptic weather events. Wind-stress components are defined at the same locations
as u and v.

Two different scenarios are considered, both running over a total of 5 days with
data output every 3 hrs. The first scenario uses τo = + 0.2 Pa corresponding to
upwelling favorable coastal winds, whereas the second scenario uses τo = −0.2 Pa,
which should lead to coastal downwelling. The mean wind-stress magnitude over
the 5-day simulation period is 2 |τo| /π = 0.128 Pa. The surface stress felt by the
ocean is calculated from Eq. (2.5).

This application uses a free surface and a numerical time step of Δt = 12 s.
The pressure accuracy of the S.O.R. iteration is set to ε = 1 × 10−4 Pa. Zero-
gradient conditions are employed for the alongshore velocity component v near
“dry” grid cells. This condition, called full-slip boundary condition, disables lateral
friction, which otherwise can create problems for variable bottom topography in
z-coordinate models.

4.5.3 Advanced Turbulence Closure

Vertical eddy diffusivity and eddy viscosity can be diagnosed from an advanced
turbulence closure proposed by Kochergin (1987). When applied to a vertical ocean
slice and under the assumption that eddy viscosity equals eddy diffusivity, this tur-
bulence scheme reads:

Kz = Az = (c2Δz)2
√

(∂u/∂z)2 + (∂v/∂z)2 − N 2 + Az,min (4.22)
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where c2 is a free parameter, Δz is vertical grid spacing, and Az,min is a small
background value. The author uses c2 = 0.15. Additional treatment is required if the
grid spacing chosen does not resolve convective plumes created by unstable density
stratification (N 2 < 0). A conventional approach is to increase turbulence levels to
a certain large value Az,max in such situations. Explicit finite-difference formulation
of the diffusion terms is associated the stability condition:

Δt ≤ (Δz)2

max(Az)

4.5.4 Results: Upwelling Scenario

Full upwelling establishes in response to the wind forcing applied (Fig. 4.13). The
wind forcing produces offshore Ekman drift in the surface layer and onshore Ekman
drift in the bottom layer. Speeds these Ekman-layer currents are 10–15 cm/s. Cur-
rents in the bottom Ekman layer move deeper water toward the coast and upward

Fig. 4.13 Exercise 18. Upwelling scenario. Snapshots of the density field, and cross-shore and
along shore components of horizontal velocity after 3 days of simulation
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to the surface. The bottom Ekman layer is the result of geostrophic alongshore flow
that runs into the same direction as the wind. This geostrophic flow is magnified in
vicinity of the surface density front, created by the upwelling, where it attains speeds
of 60 cm/s. Step-type representation of variable bathymetry obviously induces some
artificial local disturbances, but this does not lead to numerical instabilities.

Theory gives a frontal speed of c = √
(g′h1) of 49 cm/s and an internal Rossby

radius of deformation R = c/ | f | of 4.8 km. Equation (4.18) suggests that the dis-
tance of the density outcrop from the coast is a = 11.8 km after 5 days of sim-
ulation. Equation (4.19) suggests that the density interface outcrops at the sur-
face after 1.14 days. The model predictions are in good agreement with theory
(see Fig. 4.14). The coastal sea level drops by 20 cm (not shown) as a consequence
of offshore Ekman drift. The magnification of the geostrophic flow in vicinity of
the surface density front is caused by a steepening of the sea-level gradient in this
region.

Fig. 4.14 Exercise 18. Same as top panel of Fig. 4.13, but after 5 days of simulation. a is the
distance of the density outcrop from the coast. R is the frontal width

4.5.5 Additional Exercise for the Reader

Consider a stronger density stratification by increasing the density change across the
pycnocline to 5 kg/m3. Explore variations in the resultant upwelling dynamics and
compare the model prediction with theory.

4.5.6 Results: Downwelling Scenario

The wind-stress forcing creates onshore Ekman drift in the surface layer and off-
shore Ekman flow in the frictional bottom-boundary layer (Fig. 4.15). The onshore
flow pushes surface water against the coast and downward. As a consequence of the
onshore Ekman transport in the surface layer, a geostrophic jet of 50 cm/s in speed
and a width of 10 km establishes along the coast running into the same direction as
the wind. This alongshore geostrophic flow triggers net offshore drift in the bottom



4.5 Exercise 18: Coastal Upwelling and Downwelling 117

Fig. 4.15 Exercise 18. Downwelling scenario. Snapshots of the density field, and cross-shore and
alongshore components of horizontal velocity after 3 days of simulation

Ekman layer. Notice that the bottom Ekman layer attains a thickness of 10–20 m in
this simulation. During the course of the downwelling event, the coastal sea level
gradually rises by 20 cm (not shown). The resultant barotropic offshore pressure
gradient is the principal driver of the geostrophic alongshore jet.

4.5.7 Additional Exercise for the Reader

Explore the density structure and flows resulting from oscillatory wind-stress forc-
ing, prescribed by Eq. (4.21), with a period of 4 days for a total simulation time of
20 days. Note that the average wind stress is zero, so that, without diffusion effects,
the final density distribution should be the same as the initial distribution. Over
time, however, we anticipate that diffusion causes residual lateral density gradients
and associated geostrophic flows.
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4.6 Exercise 19: Ekman Pumping

4.6.1 Theoretical Background

It is obvious that an equilibrium distribution of sea-level elevation is only possible if
wind-induced flow divergence (convergence) in the surface Ekman layer is balanced
by a flow convergence (divergence) in the ocean underneath. As a consequence of
this, density surfaces in the ocean interior tend to be an amplified mirror image of
the shape of the sea surface. The physical mechanism that converts flow divergence
in the surface Ekman layer to vertical displacements of isopycnals is called Ekman
pumping. Coastal upwelling and downwelling of density interfaces (see previous
exercise) are the signatures of Ekman pumping.

4.6.2 Aim

Divergence of wind-driven flow in the surface Ekman layer is the principle agent to
creating deep-reaching geostrophic flows in the ocean. In a stratified fluid, however,
dynamical adjustment of isopycnals in the ocean interior operates to reduce lateral
pressure gradients such that large-scale geostrophic flows tend to become negligibly
weak below depths of 1,500–2,500 m. The aim of this exercise is to illustrate this
principle of baroclinic compensation using the wind-forced 2.5d vertical ocean-slice
model.

4.6.3 Task Description

The model domain has a length of 500 km, resolved by a horizontal grid spac-
ing of Δx = 5 km, and a depth of 500 m, resolved by a vertical grid spacing of
Δz = 20 m (Fig. 4.16). The unrealistically small depth has been chosen to allow for
relatively long numerical time steps. Initially, the ocean is at rest and void of lat-
eral density variations. The surface mixed-layer is 200 m thick and has a density of
ρ = 1,025 kg/m3. There is a density change at the base of this layer across which den-
sity changes by Δρ = 5 kg/m3. The associated stability frequency of this pycnocline

Fig. 4.16 Initial configuration for Exercise 19
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is N ≈ 0.05 s−1. Below the pycnocline, density increases linearly with depth char-
acterised by a stability frequency of N ≈ 8 × 10−3 s−1. The Coriolis parameter is
set to a constant value of f = 1 × 10−4 s−1 (Northern Hemisphere). Variation of the
Coriolis parameter with geographical latitude is ignored.

The model is forced by prescription of wind stress acting in the y-direction
and thus normal to the model slice. Three different wind forcings are considered
(Fig. 4.17). The structure of the wind-stress forcing is:

τwind
y = τo cos (πx/L) + τ1 (4.23)

where L is the horizontal extent of the model domain. The first scenario uses
τo = −0.1 Pa and τ1 = 0, the second scenario τo = +0.1 Pa and τ1 = 0, and the third
scenario τo = +0.05 Pa and τ1 = +0.05 Pa. In each case, the wind field is gradually
adjusted from zero to its final values during the initial 2 days of simulation to avoid
unwanted initial disturbances in the form of gravity waves and inertial oscillations.

The wind-stress forcing is such that surface Ekman transports are free of lat-
eral divergence at lateral boundaries. This implies that the sea-level elevation, the
dynamic pressure part q and vertical velocity should remain at zero values at these
boundaries. This is consistent with choice of zero-gradient conditions for u, which,
in turn, specify the indices of boundary grid cells (see Fig. 4.18). Zero-gradient
lateral boundary conditions are used for the remainder variables; that is, the velocity
component normal to the model slice v and density.

Uniform values of Ah = Kh = 50 m2/s are used for horizontal diffusivity and vis-
cosity. The Kochergin turbulence scheme of previous exercises is used to calculate

Fig. 4.17 Three different steady wind-stress forcings for Exercise 19
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Fig. 4.18 Illustration for implementation of lateral boundary conditions. Vertical arrows indicate
the grid columns in which values of vertical velocity and of the nonhydrostatic part of dynamic
pressure q are set to zero

values of vertical eddy viscosity and diffusivity. The bottom friction parameter is
set to r = 0.001. The total simulation time is 50 days with half daily data outputs.
The pressure accuracy for the S.O.R. iteration is set to ε = 10−3 Pa. The time step
is chosen at Δt = 90 s, using the free-surface version of the model.

4.6.4 Results: Scenario 1

The wind stress imposed (see Fig. 4.17a) creates a surface Ekman layer in the ocean.
Details of the vertical structure of this Ekman layer are not revolved by the rela-
tively coarse vertical grid spacing of 20 m chosen. Nevertheless, the model captures
the resultant net horizontal movement, the so-called Ekman-layer transport. In the
Northern Hemisphere, Ekman-layer transport in the surface ocean is directed 90◦ to
the right with respect to the wind direction. Its magnitude varies with the magnitude
of the wind stress. Consequently, the wind-stress forcing of Scenario 1 creates a
lateral divergence of surface Ekman-layer transports. With ignorance of flows below
the surface Ekman layer, this divergence would result in a drop of the sea surface at
a rate of:

wek = 1

ρo f

∂τwind
y

∂x
(4.24)

called Ekman-pumping velocity. In this exercise, the Ekman-pumping velocity
attains a maximum value in the middle of the model domain of about 6 × 10−3 mm/s
or 50 cm per day. The sea surface, however, does not drop at this rate, given that flow
divergence in the surface Ekman layer is partially compensated by a convergence
of lateral flow in the ocean underneath. Instead, the sea level rapidly approaches
a steady state, accompanied by a steady-state geostrophic flow in the surface layer.
As a consequence of this, the Ekman-pumping velocity translates now to the vertical
displacement speed of the pycnocline caused by lateral flow divergence in the ocean
interior. Accordingly, we can anticipate that the shape of the sea level mirrors the
horizontal distribution of the Ekman-pumping velocity; that is,

η ∝ wek = 1

ρo f

∂τwind
y

∂x
= −π

τo

ρo f L
sin (πx/L) (4.25)
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which we yield with insertion of Eq. (4.23) into Eq. (4.24). The model prediction
reproduces this shape (Fig. 4.19). The sea level attains a depression of >50 cm in the
middle of the model domain after 30 days of simulation. The resultant sea-level gra-
dients trigger surface geostrophic flows of maximum speeds of 40 cm/s running into
the same direction as the wind (Fig. 4.20). Recall that geostrophic flows run along
lines of constant pressure and therefore normal to the model slice. Interestingly, the

Fig. 4.19 Exercise 19. Scenario 1. Snapshots of sea-level elevation (top panel) and density field
(bottom panel) after 30 days of simulation

Fig. 4.20 Exercise 19. Scenario 1. Distributions of horizontal velocity components (color shading)
after 30 days of simulation. Lines represent density contours
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wind-stress forcing imposed creates low-amplitude internal waves at the pycnocline.
Baroclinic compensation is evident from the weakening of geostrophic flows below
the pycnocline.

In the real situation and away from the western boundaries of ocean basins, the
divergence of transports in the surface Ekman layer is compensated by a conver-
gence of geostrophic flow owing to meridional variation of the Coriolis parameter;
that is, the so-called β effect. The configuration of this exercise does not reproduce
this balance, known as the Sverdrup balance. Nevertheless, the principal mechanism
inherent with the baroclinic compensation process is the same.

4.6.5 Results: Scenario 2

The wind-stress forcing displayed in Fig. 4.17b creates a convergence of surface
Ekman-layer transports such that the sea level rises in the middle of the model
domain (Fig. 4.21). In equilibrium, this surface convergence is compensated by a
divergence of lateral flow in the bottom Ekman layer, inducing a downward dis-
placement of the pycnocline. As in Scenario 1, modulation of the internal den-
sity field leads to a weakening of the geostrophic flow below the pycnocline.
Again, the geostrophic surface flow runs largely into the same direction as the
wind (Fig. 4.22). The following exercise will demonstrate that this is not a general
rule.

Fig. 4.21 Exercise 19. Same as Fig. 4.19, but for Scenario 2
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Fig. 4.22 Exercise 19. Same as Fig. 4.20, but for Scenario 2

4.6.6 Results: Scenario 3

Would you believe that winds can produce currents that run against the wind direc-
tion? Wouldn’t this be a paradox being in gross conflict with expectation? The aim
of this exercise is to prove that, on the rotating Earth, the wind can indeed create
such flows.

The wind-stress forcing imposed in the scenario (see Fig. 4.17c) creates con-
vergence of surface Ekman-layer transports in the left half of the model domain
and divergence in the right half. The distribution of sea-level elevation and, as an
amplified mirror image, the distribution of pycnocline depth reflect this (Fig. 4.23).
The geostrophic balance for our 2.5d vertical ocean-slice model reads:

v = 1

fρo

∂ P

∂x
(4.26)

where P is dynamic pressure. In vicinity of the sea surface, the density-variable part
can be neglected and the geostrophic balance for the surface flow reads:

v = g

f

∂η

∂x
(4.27)

where η is sea-level elevation. The latter balance implies that the geostrophic flow
in central regions of the model domain, being indirectly created by the wind stress,
has to run opposite to the wind direction, since the slope of the sea level is reversed
in this region. The speed of this flow even peaks in a region where the wind stress
vanishes.
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Fig. 4.23 Exercise 19. Scenario 3. Distributions of (top panel) sea-level elevation, (middle panel)
density field, and (bottom panel) v-component of velocity after 30 days of simulation. Black lines
are density contours

This example illustrates the subtle way by which the ocean responds to wind
forcing. Equatorial countercurrents are an example of such exotic wind-driven
geostrophic flows.

4.6.7 Additional Exercises for the Reader

Repeat Scenario 1 of this exercise with a longer simulation time to explore whether
the pycnocline can outcrop at the sea surface, and if so, how this modifies the
dynamics. Repeat Scenario 3 of this exercise with the settings of τo = −0.1 Pa
and τ1 = 0.05 Pa in Eq. (4.25) and identify regions in which the geostrophic flow
runs opposite to the wind direction.



Chapter 5
3D Level Modelling

Abstract This chapter introduces the reader to fully three-dimensional hydrody-
namic level models. Exercises address isolated oceanic eddies, eddy formation in
a strait, density-driven exchange flows through a strait, coastal upwelling in three
dimensions, the thermohaline deep circulation in the ocean, and, as a highlight,
equatorially trapped Kelvin waves accompanying El-Niño events.

5.1 The Basic Equations

5.1.1 The Basics

This section outlines the full three-dimensional equations governing the dynamics
of an incompressible fluid with a free surface. This comprises the momentum equa-
tions, the continuity equation, and a density-conservation equation, plus boundary
conditions.

5.1.2 Conservation of Momentum

As in the vertical-ocean slice model, dynamic pressure is separated into two
parts:

P = p + q (5.1)

where (lower-case) p refers to the hydrostatic pressure field with reference to an
undisturbed (horizontal) sea level, and q includes pressure effects imposed by a
tilted sea surface and by nonhydrostatic pressure contributions. Again, the first pres-
sure part p is diagnosed from the hydrostatic balance:

∂p

∂z
= − (ρ − ρo) g (5.2)
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where z is the vertical coordinate, ρ is true density, ρo is surface density, g is accel-
eration due to gravity. The second pressure contribution q appears implicitly in the
momentum equations and cannot be derived in an explicit manner. The momentum
equations can be written as:

∂u

∂t
+ Adv(u) − f v = − 1

ρo

∂(p + q)

∂x
+ Diff(u)

∂v

∂t
+ Adv(v) + f u = − 1

ρo

∂(p + q)

∂y
+ Diff(v) (5.3)

∂w

∂t
+ Adv(w) = − 1

ρo

∂q

∂z
+ Diff(w)

where (u, v, w) are components of velocity in a Cartesian coordinate system with
coordinates (x, y, z), t is time, f is the Coriolis parameter, and ρo is reference
density. Notice that the pressure split makes the buoyancy force disappear from
the vertical momentum equation. In the real situation, the Coriolis force includes a
contribution inducing a momentum transfer between the u and w components. This
component is often negligibly small (see Cushman-Roisin, 1994). It is therefore not
included in the above equations.

The operator Adv() in Eq. (5.3) denotes the advection terms and is given by:

Adv(ψ) = u
∂ψ

∂x
+ v

∂ψ

∂y
+ w

∂ψ

∂z

where ψ is the property subject to advection. Diffusion of any of the three velocity
components is given by:

Diff(ψ) = ∂

∂x

(
Ah

∂ψ

∂x

)
+ ∂

∂y

(
Ah

∂ψ

∂y

)
+ ∂

∂z

(
Az

∂ψ

∂z

)

where Ah and Az are horizontal and vertical eddy viscosities, parameterising effects
of turbulence. The separation into horizontal and vertical components is justified
given that horizontal mixing is rather triggered by larger-size geostrophic eddies,
whereas turbulence via vertical shear of lateral currents drives mixing in the vertical.

5.1.3 Conservation of Volume

Conservation of volume is expressed by the continuity equation for an incompress-
ible fluid that can be written as:

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (5.4)
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Vertical integration of the continuity equation gives a prognostic equation for
surface dynamic pressure, yielding:

∂qs

∂t
= −ρog

(
∂(h 〈u〉)

∂x
+ ∂(h 〈v〉)

∂y

)
(5.5)

where qs = ρogη with ρo being surface density and η being sea-surface elevation,
h is total local water depth, and 〈.〉 represents a vertical average.

5.1.4 Evolution of the Density Field

Seawater density depends on temperature, salinity and pressure. For simplicity, we
assume a linear dependence of seawater on temperature and salinity, ignore any
pressure effects, and assume that eddy diffusivities for heat and salt are the same. To
this end, the evolution of the density field can be described by a density-conservation
equation, given by:

∂ρ

∂t
+ Adv(ρ) = Diff(ρ) (5.6)

where the diffusion operator is given by:

Diff(ρ) = ∂

∂x

(
Kh

∂ρ

∂x

)
+ ∂

∂y

(
Kh

∂ρ

∂y

)
+ ∂

∂z

(
Kz

∂ρ

∂z

)

where Kh and Kz , respectively, are horizontal and vertical eddy diffusivities.

5.2 Numerical Treatment

5.2.1 The 3d Arakawa C-grid

The index triplet (i, j, k) is used as a pointer to certain grid cells of the Arakawa
C-grid (Fig. 5.1), where Δx is the grid spacing in the x-direction, Δy is the grid
spacing in the y-direction, and Δz is the grid spacing in the vertical direction. Note
that the i index runs opposite to the z-coordinate. For convenience, we locate the
Cartesian coordinate system such that the x-axis points to the east, the y-axis to
the north, and the z-axis upward. Grid points of scalars (pressure, density, Eulerian
concentration, eddy viscosity, etc.) are centred between velocity grid points. Within
each grid cell, the u-grid point is located to the east, the v-grid point to the north,
and the w-grid point above with respect to the scalar grid point.
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Fig. 5.1 The three-dimensional Arakawa C-grid

5.2.2 Treatment of the Advection Terms

Using the product rule of differentiation, the advection terms for a property B can
be written as:

u
∂ B

∂x
+v

∂ B

∂y
+w

∂ B

∂z
= ∂(u B)

∂x
+ ∂(vB)

∂y
+ ∂(wB)

∂z
− B

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
(5.7)

The last term involves the continuity equation (Eq. 5.4) and therefore should
vanish in theory. Nevertheless, this term is retained in the numerical advection
scheme for elimination of small round-off errors that otherwise could accumulate
during a simulation. A control-volume approach is used to calculate advection of
scalars and the nonlinear terms in the momentum equations (Fig. 5.2). With this
approach, fluxes of a property into this control volume are calculated from fluxes
through its east/west, north/south and top/bottom faces, respectively. Again, individ-
ual fluxes are computed by means of a Total-Variation-Diminishing (TVD) advec-
tion scheme using the Superbee limiter (see Sect. 3.6). Implementation for the newly
introduced y-direction should be straight forward.
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Fig. 5.2 The three-dimensional control volume

5.2.3 The Nonhydrostatic Solver of the Momentum Equations

As in the vertical ocean-slice model, the S.O.R. scheme is used to derive the pressure
field q. To this end, q is split up into explicit and implicit components; that is,

q ⇒ qn + Δqn+1

For the fully three-dimensional momentum equations, the Poisson equation for
Δq reads:

aeΔqn+1
i, j,k+1 + awΔqn+1

i, j,k−1 + anΔqn+1
i, j+1,k + asΔqn+1

i, j−1,k+
+atΔqn+1

i−1, j,k + abΔqn+1
i+1, j,k − aoΔqn+1

i, j,k = q∗
i, j,k (5.8)

The coefficients in this equation for uniform grid spacings are given by:

ae = aw = Δz/Δx

an = as = ΔzΔx/(Δy)2

at = ab = Δx/Δz

ao = ae + aw + an + as + at + ab

The right-hand side of the Poisson equation (Eq. 5.8) represents the divergence
of first-guess values of velocity and is given by:

q∗
i, j,k = ρo

Δt

[
(u∗

i, j,k − u∗
i, j,k−1)Δz+

+ (v∗
i, j,k − v∗

i, j−1,k)
ΔxΔz

Δy
+ (w∗

i, j,k − w∗
i+1, j,k)Δx

]
(5.9)
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First-guess values of velocity components in the latter equation are calculated
from:

u∗
i, j,k = cos (α)un

i, j,k + sin (α)vn
u − ΔtAdv(u) + Δt Fn

u

v∗
i, j,k = cos (α)vn

i, j,k − sin (α)un
v − ΔtAdv(v) + Δt Fn

v (5.10)

w∗
i, j,k = wn

i, j,k − ΔtAdv(w) + Δt Fn
w

where α = Δt f , uv are u-values interpolated to v-grid points and vu are v-values
interpolated to u-grid points. Finite-difference versions of the nonlinear terms are
represented by Adv(u), Adv(v), and Adv(w). The Coriolis force is implemented
using the local-rotation approach (see Sect. 4.1). The remaining terms in Eq. (5.10)
are given by:

Fn
u = − 1

ρoΔx
(pn

i, j,k+1 − pn
i, j,k + qn

i, j,k+1 − qn
i, j,k) + Diff(u)

Fn
v = − 1

ρoΔy
(pn

i, j+1,k − pn
i, j,k + qn

i, j+1,k − qn
i, j,k) + Diff(v) (5.11)

Fn
w = − 1

ρoΔz
(qn

i−1, j,k − qn
i, j,k) + Diff(w)

where Diff(u), Diff(v), and Diff(w) denote finite-difference versions of momentum
diffusion terms. Once the S.O.R. iteration has converged to a user-specified pressure
accuracy, values of velocity components at the next time level (n + 1) are given by:

un+1
i, j,k = u∗

i, j,k − Δt

ρoΔx
(Δqr

i, j,k+1 − Δqr
i, j,k)

vn+1
i, j,k = v∗

i, j,k − Δt

ρoΔy
(Δqr

i, j+1,k − Δqr
i, j,k) (5.12)

wn+1
i, j,k = w∗

i, j,k − Δt

ρoΔz
(Δqr

i−1, j,k − Δqr
i, j,k)

where the index r refers to the result of the S.O.R. iteration. Analog to treatment
in the vertical ocean-slice model, the three-dimensional S.O.R. iteration includes
updates of the surface value of Δq via calculation of the lateral divergence of depth-
integrated values of u and v.

5.2.4 Stability Criteria

The CFL stability criterion associated with advection of a property is given by:

Δt ≤ min

(
Δx

u
,
Δy

v
,
Δz

w

)
(5.13)



5.3 Exercise 20: Geostrophic Adjustment in 3D 131

It can be shown (Kowalik and Murty, 1999) that the CLF stability associated with
the propagation of surface gravity waves is given by:

Δt ≤ min (Δx,Δy)√
2ghmax

(5.14)

where hmax is the maximum water depth of the model domain. Notice that the
factor of two appears here in the denominator. The latter condition is relevant
for applications considering a free sea surface. Longer numerical time steps may
work with choice of the rigid-lid approximation (see Sect. 3.7). In principle, the
three-dimensional free-surface hydrodynamic level model, described here, can be
employed to simulate any of the previous exercises in three-dimensional space.
Nevertheless, to avoid super-long simulation times, the reader should keep the num-
ber of grid points as small as possible. Also data output should be restricted to
a few selected horizontal and vertical transects of variables to avoid data-storage
problems.

5.3 Exercise 20: Geostrophic Adjustment in 3D

5.3.1 Aim

The aim of this exercise is to test and validate the three-dimensional free-surface
hydrodynamic level model by means of the geostrophic adjustment problem using
a configuration similar to that of Exercise 15.

5.3.2 Task Description

The model domain is 5×5 km in lateral extent and 500 m in depth (Fig. 5.3). Lateral
grid spacings are set to Δx = Δy = 2 km. The vertical grid spacing is set to Δz =
20 m. This gives a total of 25×25×25 =15,625 grid points, which exceeds by far the
number of grid points used in previous model simulations. Zero-gradient conditions
are used for all variables at lateral boundaries.

Fig. 5.3 Initial configuration for Exercise 20
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The model is forced by initial prescription of a cylindrical patch of surface water
of 10 km in diameter and a thickness 200 m. This patch is initially 0.1 kg/m3 lighter
compared with ambient water of a density of ρo = 1,028 kg/m3. The associated den-
sity anomaly is linearly adjusted from zero to its final value during the first 2 hrs of
simulation.

The Coriolis parameter is set to f = 1×10−4 s−1. We expect that geostrophic
adjustment creates frontal currents running around the rim of the low-density patch.
We also expect that the width of this current is of the order of the internal Rossby
radius of deformation, given by Eq. (4.12), which is approximately 3.4 km in this
exercise. Although the lateral grid spacing of 2 km does not adequately resolve this
length scale, the results will show that the model is able to capture key dynamical
aspects of the geostrophic adjustment process.

Wind forcing is not applied in this exercise. Horizontal eddy viscosity and eddy
diffusivity are set to uniform values of Ah = Kh = 1 m2/s. Kochergin’s turbulence
closure scheme, Eq. (4.22), is employed for calculation of variable vertical eddy vis-
cosity and eddy diffusivity. The bottom-friction parameter in the assumed quadratic
bottom-friction law is set to r = 0.001.

The total simulation time is 60 hrs (2.5 days) with data outputs at hourly interval.
Data outputs are those of surface distributions of density, horizontal velocity compo-
nents and sea-level elevation, and vertical transects of density and horizontal veloc-
ity components across the centre of the model domain at y = 25 km. The time step
is set to Δt = 5 s, using the free-surface version of the model. Pressure accuracy of
the S.O.R. iteration is set to ε = 0.01 Pa.

5.3.3 Results

The geostrophic adjustment process creates a high-pressure centre associated with
a sea-level elevation of 1 cm (not shown). This drives an anticyclonic geostrophic
surface eddy of approximately 20 cm/s in speed (Fig. 5.4) superimposed on which
are inertial oscillations. Instead of continued lateral spreading, the Coriolis force
operates to maintain the low-density surface patch as a circular feature that only
slowly dissipates owing to both lateral density diffusion and frictional effects. As
anticipated, a cyclonic eddy establishes in the bottom layer owing to water-column
stretching (Fig. 5.5). In summary, the three-dimensional model appears to capture
key dynamical aspects of the geostrophic adjustment process, even with a relatively
coarse spatial resolution. Note the striking similarity of the 3d findings with those
of the 2.5d application in Exercise 16 (see Sect. 4.2).

5.3.4 Additional Exercise for the Reader

Place a cylindrical patch of denser water at the bottom of the model domain and
explore the geostrophic adjustment process that follows for this configuration. Vary



5.4 Exercise 21: Eddy Formation in a Strait 133

Fig. 5.4 Exercise 20. Surface distribution of density (shading) and horizontal velocity (arrows)
after 2 days of simulation. Velocity grid points of speeds <1 cm/s are omitted

Fig. 5.5 Exercise 20. Vertical transect at y = 25 km showing density (shading) and the v-velocity
component (contours at 4 cm/s interval) after 2 days of simulation. Solid (broken) lines refer to
positive (negative) values of v

the value of the bottom-friction parameter over one order of magnitude to explore
the role that bottom friction and the bottom-Ekman layer play in the dynamics
evolving.

5.4 Exercise 21: Eddy Formation in a Strait

5.4.1 Background

Eddy shedding by frontal flows by the barotropic and/or baroclinic instability mech-
anisms is a common feature in the ocean. For physical details of these instability
mechanisms the reader is referred to other books (e.g., Cushman-Roisin, 1994). In
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Fig. 5.6 An ocean eddy of about 20 km in radius. The spirals are ice bands. The photo was taken
from an airplane flying over the Sea of Okhotsk. From Wakasutchi and Ohshima (1990)

regions of cold winter climates and sea ice formation, the trace of eddies can pro-
duce spectacular and beautiful patterns in the sea ice, such as in the Sea of Okhotsk
(Fig. 5.6).

Narrow passages connecting ocean basins are called straits. Straits are often
combined with shallower water depth associated with a sill. The Soya Warm Cur-
rent enters the Sea of Okhotsk from the Sea of Japan through the Soja Strait and
continues along the coast of Hokkaido as a coastal boundary current. Instability of
this coastal current produces spiralling ice patterns which are akin to cloud patterns
produced by hurricanes.

5.4.2 Aim

The aim of this exercise is to simulate eddy shedding of the Soya Warm Current in
the Sea of Okhotsk with the three-dimensional hydrodynamic model developed in
this book. To this end, an experimental design similar to that used by Ohshima and
Wakatsuchi (1990) in their numerical study will be employed.

5.4.3 Task Description

This exercise requires variable bathymetry resembling that of the Sea of Okhotsk.
One option would be to download realistic gridded bathymetric data from the Inter-
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net. The General Bathymetric Chart of the Oceans (GEBCO) found at http://www.
gebco.net would be a useful data source. Instead of this, the author wishes to demon-
strate the reader an alternative way to create an idealised bottom topography using
bathymetric charts as visual template. Section 5.4.4 details the method creating the
bathymetry shown in Fig. 5.7.

The model domain is 360 km long and 180 km across resolved by a lateral
isotropic grid spacing of 3.6 km. The objective here is to be able to just resolve the
eddy scale of 30 km with a sufficient number of grid points while the model domain
is large enough to capture several eddies. The islands Hokkaido and Sakhalin appear
as rectangular blocks, which is sufficient for the purpose of the study. The model’s
Soya Strait has a width of about 60 km and a maximum depth of 60 m. Water depth
in the Sea of Okhotsk is limited to 200 m to allow for relatively large numerical
time steps. The vertical grid spacing is set to 20 m. The Coriolis parameter is set to
1 × 10−4 s−1, corresponding to an inertial period of 17.45 hrs.

For simplicity, density is assumed uniform and the existence of sea ice is ignored.
The model is forced via prescription of an inflow from the Japan Sea with an
arbitrarily chosen speed of 20 cm/s. This speed is applied to velocity components
directed normal to the open boundary. Parallel velocity components are kept at zero
value. To avoid initial disturbances, the inflow speed is gradually adjusted to its final
value over the first 2 days of simulation. Zero-gradient conditions are used for other
variables at inflow boundaries. At the downstream open boundary, zero-gradient
conditions are used for all variables.

Lateral momentum diffusion with uniform eddy diffusivity of Ah = 5 m2/s is
used in conjunction with no-slip boundary conditions for flow parallel to coastlines.
This condition is implemented via appropriate settings of the velocity value on the
first inland grid point (see Fig. 5.8 for an example). To avoid problems in the ocean
interior, this condition is only used in grid cells adjacent to coastlines. No-slip condi-
tions are used adjacent to steps in bathymetry. The Kochergin scheme is employed
for parametrisation of vertical turbulence using the same parameter settings as in
Exercise 20. For simplicity, bottom friction is disabled.

Fig. 5.7 Model geometry for Exercise 21. Thick solid lines denote closed boundaries. Arrows indi-
cate the inflow boundaries. The dashed line indicates a boundary used for the initial prescription
of Eulerian tracer concentration
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Fig. 5.8 Example of the implementation of no-slip conditions for flow parallel to coastlines

A field of Eulerian tracer concentration is added for visualisation of the fluid
dynamics. To this end, concentrations of unity are allocated initially on one side of
the dashed line in Fig. 5.7, whereas zero values are assigned on the other side. Pat-
terns evolving in this tracer field are indicative of possible sea ice patterns forming
in this region. The assumption here is that sea ice operates as a passive tracer which
is only valid for young stages of the ice-formation process; that is, before a solid
ice sheet has been formed. The total simulation time is 10 days with a numerical
time step of Δt = 45 s. The pressure accuracy for the S.O.R. simulation is set to
ε = 0.01 Pa.

5.4.4 Creation of Variable Bathymetry

Variable bathymetry can be created via prescription of initial coastlines and block-
type regions of certain water depths and the use of a diffusion equation for subse-
quent smoothing. The diffusion equation is given by:

∂h

∂t
= κ

(
∂2h

∂x2
+ ∂2h

∂y2

)
(5.15)

where the diffusion coefficient κ and the duration of smoothing are adjusted such
that the result is acceptable. Coastlines and land should not disappear during the pro-
cess. This can be implemented in the code via the choice of zero-gradient conditions
at the borders between dry and wet grid cells.

5.4.5 Results

The inflow passes through the Soya Strait and continues as a coastal boundary cur-
rent along the coast of Hokkaido (Fig. 5.9). The current approaches a maximum
speed of 1.0–1.3 m/s at a distance of 20–25 km from the coast, which agrees with
observational evidence. The barotropic flow (baroclinic effects are eliminated via
choice of uniform density) becomes dynamically unstable and forms meanders in
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Fig. 5.9 Exercise 21. Snapshot of the distributions of Eulerian tracer (shading and contours) and
the flow field (arrows). Flow vectors are interpolated over 2 × 2 grid cells

interaction with the irregular coastline of Sakhalin and bathymetric variations. Some
meanders develop into isolated eddies of about 30 km in diameter. All eddies formed
are cyclonic features of anti-clockwise rotation. This sign of relative vorticity and
the spatial scale of mesoscale eddies are in agreement with the ice-spiral pattern
shown in Fig. 5.7. Eddies are not stationary features. Instead of this, eddies are
rapidly carried away by the simulated Soya Warm Current.

5.4.6 Bathymetry Creation

The folder “Miscellaneous/Bathymetry for Exercise 21” on the book’s ftp site con-
tains the FORTRAN bathymetry creator, named “BathCreator.f95”, needed for this
exercise. The result is written to a file named “topo.dat” that is requires as input
file for the FORTRAN simulation code. Included is also the SciLab script, called
“Bath.sce” that creates Fig. 5.7.

5.4.7 Additional Exercises for the Reader

Repeat this exercise with the same coastline configuration but uniform water depth
of 100 m. Does this configuration also support eddy formation? Include bottom fric-
tion and explore variations in the dynamic response.

5.5 Exercise 22: Exchange Flow Through a Strait

5.5.1 Aim

The aim of this exercise is to study density-driven exchange flows through a strait
that connects ocean basins containing water of different densities.
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5.5.2 Mediterranean Seas

Mediterranean seas are semi-enclosed bodies of water that have a limited exchange
of deep water with the ambient ocean and where the water circulation is dominated
by salinity and temperature differences rather than wind forcing. The exchange with
the adjacent ocean is constrained by a narrow strait often in conjunction with shal-
lower water depth associated with a sill.

Mediterranean seas of the Atlantic Ocean are the Eurafrican Mediterranean Sea
including various sub-seas such as the Adriatic Sea and the Black Sea, the Arctic
Ocean, the American Mediterranean Sea that includes the Gulf of Mexico and the
Carrabian Sea, and the Baltic Sea. Mediterranean seas of the Indian Ocean are the
Persian Gulf and the Red Sea, and the Australasian Mediterranean Sea, including
the Banda, Sulu, Sulawesi and Java Seas, being connected with the Pacific Ocean.
See (Tomczak and Godfrey, 2003) for more details.

Mediterranean seas share characteristics of estuaries, but the latter are generally
much shallower and narrower including gulfs and seaward portions of rivers. Some
scientists including the author prefer to classify the Baltic Sea and the Persian Gulf
as estuaries.

Mediterranean seas receiving more freshwater via continental runoff and direct
precipitation than they lose by evaporation are called dilution basins and are found in
humid climatic zones. The surplus of freshwater in these systems creates an outflow
of low-salinity water in the surface layer and an inflow of oceanic water in the lower
layer (Fig. 5.10a). On the other hand, concentration basins experience a net fresh-
water loss owing to excessive evaporation and are situated in arid climatic zones.
The loss of freshwater from these systems leads to an outflow of saline sub-surface

Fig. 5.10 The circulation of mediterranean seas for (top panel) dilution basins and (bottom panel)
concentration basins



5.5 Exercise 22: Exchange Flow Through a Strait 139

water and to an inflow of surface water from the ambient ocean (Fig. 5.10b). The
Eurafrican Mediterranean Sea, the Red Sea and the Persian Gulf are examples of
concentration basins. The Baltic Sea and the Arctic Ocean are examples of dilution
basins.

The Coriolis force comes into play in this exchange circulation when the width of
the entrance to a mediterranean sea exceeds the internal Rossby radius of deforma-
tion. In this situation, geostrophic adjustment triggers a predominantly horizontal
exchange circulation. In additional to this, geostrophic frontal flows often lead to
dynamic instabilities and shedding of eddies, which makes the exchange circula-
tion complex and difficult to predict. On the other hand, relatively narrow entrances
constrain the circulation to a purely vertical overturning circulation.

5.5.3 Task Description

The model domain is 200 km in length and 100 km across, resolved by lateral grid
spacings of Δx = Δy = 4 km (Fig. 5.11). Included are two separate “deeper” ocean
basins, 100 m in depth, being connected by a strait of 50 m in depth. The vertical
grid spacing is set to Δz = 10 m. The strait is 40 km in length and 20 km in width.
Initially, water density is uniform at 1,028 kg/m3 and there are no currents. The
exchange circulation is created by gradually increasing the density of the entire
water column in the left half of the model domain by Δρ = 2 kg/m3 over the first 2
days of the simulation. This is done via the flux condition:

ρi, j,k = ρi, j,k + Δt

T
Δρ

where T is taken as 2 days (expressed in seconds), and Δt is the numerical
time step. This type of forcing allows for density anomalies to evolve during the

Fig. 5.11 Model configuration for Exercise 22
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adjustment period. The Coriolis parameter is set to f = 1×10−4 s−1 (Northern
Hemisphere). This configuration gives an internal deformation radius of approx-
imately 7 km, implying that geostrophic adjustment can take place within length
scales imposed by the strait’s geometry. Coriolis effects can certainly not be ignored
here. The lateral grid spacing only marginally resolves dynamic processes on length
scales on the internal deformation radius and some bias in the dynamics is to be
expected.

Lateral eddy viscosity and eddy viscosity are given a constant value of Ah = Kh =
1 m2/s. The no-slip condition is used along coastlines. Vertical eddy viscosity and
eddy diffusivity, assumed equal, are diagnosed from Kochergin’s turbulence closure
scheme. The bottom-friction parameter is set to r = 0.001. The total simulation
time is 20 days with data outputs at every 4 hrs. Data outputs consist of surface
and bottom distributions of density and lateral flow fields together with a vertical
transect of these variables across the middle of the strait at x = 100 km. The free-
surface version of the model is used with a time step of Δt = 10 s, which satisfies the
CFL criterion for fast-propagating surface gravity waves (Eq. 5.14). The pressure
accuracy for the S.O.R. simulation is set to ε = 0.01 Pa.

5.5.4 Results

The density forcing creates a lateral density contrast across the strait. This initiates a
bottom-arrested density-driven current moving denser bottom water from the west-
ern basin into the eastern basin (Fig. 5.12). Volume transports associated with this
current lower the sea level in the western basin and lift the sea level in the eastern
basin. The resultant sea-level gradient, in turn, triggers a westward surface return
flow through the strait.

The Coriolis force becomes a dominant force within a timescale of a few days.
Geostrophic adjustment along density fronts follows. As a result of this adjust-
ment, the bottom flow of denser water turns to the south as it enters the eastern
basin, whereas the returning surface flow turns to the north as it enters the western
basin.

Later in this process, nonlinear interaction produces transient eddies inside the
strait, and a stationary barotropic eddy forms in the outflow region (Fig. 5.13). The
dynamics and density structure in the strait are highly transient varying from hori-
zontally aligned density surfaces to situations of vertically aligned density surfaces.
The reason behind this intermittency are transient pulses of dense water outflows,
dynamical instabilities, and a complex combination of gravitational and geostrophic
adjustments. Figure 5.14 shows a situation which agrees with expectations. At other
times, however, the outflow can be intermittently concentrated near the surface with
return flows occurring along both sides of the strait. Overall, the outflow of dense
water gives rise of an anti-clockwise circulation pattern in the eastern basin. In
reality, dense outflows can travel vast distances along the continental slope such
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Fig. 5.12 Exercise 22. Surface and bottom horizontal distributions of density (shading and
contours) together with horizontal flow fields (arrows) after 5 days of simulation. Velocity grid
points of speeds < 1 cm/s are omitted

Fig. 5.13 Exercise 22. Same as Fig. 5.12, but after 10 days of simulation
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as the Deep Western Boundary Current in the Atlantic Ocean. Outflow of dense
water from the Eurafrican Mediterranean Sea finds an equal density horizon at
around 1000-m water depth in the adjacent ocean where it leaves the sea floor
and becomes injected into the ambient water column. This outflow is also popular
for its creation of submerged mesoscale eddies called “meddies” by the scientific
community.

Fig. 5.14 Exercise 22. Vertical transect of density (shading) and the u-component of velocity
(contours) at x = 100 km after 5.5 days of simulation. Solid lines refer to eastward flow and broken
lines to westward flow. The contour interval is 4 cm/s. The zero-value contour is omitted

5.5.5 Additional Exercise for the Reader

Repeat this exercise for different values of strait widths and/or density contrasts
between the basins. The reader is encouraged to explore the dynamics evolving for
a strait width that is close to the internal radius of deformation.

5.6 Exercise 23: Coastal Upwelling in 3D

5.6.1 Aim

The aim of this exercise is to simulate the coastal upwelling circulation in three
spatial dimensions using a idealised headland configuration.

5.6.2 Task Description

The model domain is 200 km in length and 100 km in width resolved by an isotropic
horizontal grid spacing of Δx = Δy = 2 km. Using the bathymetry creator of the
previous exercise, an idealised headland and a small bay is included (Fig. 5.15).
Maximum water depth is 100 m and minimum water depth is 20 m, using a vertical
grid spacing of Δz = 10 m. The northern boundary is a coast. All other boundaries
are open boundaries using zero-gradient conditions for all variables. An exception
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Fig. 5.15 Configuration for Exercise 23

is the sea-level anomaly which is kept at zero value along the southern offshore
boundary. No-slip conditions are used for flow parallel to coastlines (see Sect. 5.4).

Initially, the upper 40 m of the water column has a density of ρ1 = 1,028 kg/m3.
The ocean underneath is by Δρ = 1 kg/m3 denser. Together with a Coriolis param-
eter of f = 1×10−4 s−1 (Northern Hemisphere), this gives a frontal width (take
Eq. 4.12) of R ≈ 6.2 km, which is barely resolved by the lateral grid spacing chosen.
Horizontal eddy viscosities and eddy diffusivities are set to uniform values of 1 m2/s.
Kochergin’s turbulence closure scheme is used for parametrisation of sub-grid scale
vertical mixing. The same settings as in previous exercises are used. The bottom
friction coefficient is set to a value of r = 0.001.

The model is forced via prescription of an upwelling favorable eastward wind
stress of 0.1 Pa in magnitude. After Eq. (2.6), this corresponds to a wind speed of
∼ 7.2 m/s for an assumed wind-drag coefficient of Cd = 1.5 × 10−3. This wind
forcing is gradually blended in over the first two days of simulation. According to
Eq. (4.19) and for a wind-stress magnitude of 0.1 Pa, full upwelling is expected to
occur after 3 days of simulation. The initial wind-stress adjustment, however, will
lead to a slight delay of this expected upwelling response.

Eulerian tracer concentration is used to mark sub-surface shelf water below 40-
m depth. The total simulation time is 10 days, being of the order of the typical
timescale of weather events, using a numerical time step of 30 secs. The rigid-lid
approximation is not employed. The pressure accuracy of the S.O.R. iteration is set
to ε = 0.01 Pa.

5.6.3 Results

The wind-stress forcing creates an offshore Ekman drift in the surface layer along
southward facing stretches of the coast. This offshore drift lowers the coastal sea
level and produces a geostrophic flow running into the wind direction. Initially, the
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geostrophic flow follows bathymetry contours and circulates smoothly around the
bay. Onshore flow in the bottom Ekman layer results in coastal upwelling in which
deeper water reaches the sea surface after about 5 days of simulation.

The surface flow attains speeds of up to 80 cm/s along the upwelling front that
gradually moves away from the southern coastline of the headland. Owing to this
departure from the coast, the upwelling jet looses its bathymetry control and pro-
duces an anticyclonic eddy of about 25–30 km in diameter (Fig. 5.16, top panel).
This scale is 4–5 times the internal Rossby radius of deformation in agreement with
baroclinic instability theory (e.g., Cushman-Roisin, 1994).

An upwelling jet also establishes downstream the bay along the northern coast-
line of the model domain. Interaction of the eddy-induced return flow with this jet
leads to formation of a counter-rotating vortex pair (Fig. 5.16, bottom panel). When
recalling the direction of Ekman drift in the bottom Ekman layer, it is not difficult to
conclude that the anticyclonic eddy creates downwelling and suppresses upwelling
in its centre, whereas the cyclonic eddy gradually lifts deeper water to the surface.
Hence, headlands can operate as agents of baroclinic eddy formation which locally
either suppress or enhance upwelling.

Fig. 5.16 Exercise 23. Snapshot surface distributions of tracer concentration (color shading) and
flow field (arrows, averaged over 4 × 4 grid cells. Red shading refers to dense subsurface water
being upwelled to the surface. Bottom panel: The circle marked “H” (for high-pressure centre)
indicates a cyclonic eddy that operates to suppress upwelling. The circle marked “L” (for low-
pressure centre) refers to an anticyclonic eddy



5.6 Exercise 23: Coastal Upwelling in 3D 145

5.6.4 Additional Exercise for the Reader

Repeat this exercise with an overall onshore (northward) wind stress. Does the east
facing coast of the bay support coastal upwelling?

5.6.5 Time-Splitting Methods

The reader will have noticed by now that three-dimensional model simulation are
fairly slow and take a long time to complete. The reason of this time-step compli-
ance with the CFL criterion for fast propagating surface gravity waves (Eq. 5.15).
Enabling the rigid-lid condition (see Sect. 3.7) seems a solution, but this could lead
to a bias in the dynamics predicted. Another method is to use different numerical
time steps in different parts of the model code, a method called time splitting. To this
end, small time steps only need to be applied within the S.O.R. iteration involving
the surface pressure field, whereas all other parts such as advective and diffusive
changes can employ a much larger time step. Note that the latter still needs to satisfy
the stability criterion Eq. (5.14).

The first step of the time-stepping procedure is to predict the density field and
first-guess changes of the velocity field, Δu, Δv and Δw, using an “internal” time
step Δti being a multiple of the “external” time step Δte; that is,

Δti = mΔte

where the multiplier m is a positive integer. In a second step and prior to the S.O.R.
iteration, the vector (u∗, v∗, w∗) is initialised with the current velocity field (un ,
vn , wn). After this, the S.O.R. iteration is repeated m times whereby the first-guess
velocity is updated using equal fractions of the first-guess velocity change:

u∗ ← u∗ + Δu/m

v∗ ← v∗ + Δv/m

w∗ ← w∗ + Δw/m

An important rule when using a time-splitting method is that the internal time
step should be not more than about 20 times the external time step, provided that all
stability criteria are met. Otherwise, the external and internal modes inherent with
the dynamics could drift apart from each other leading to a bias in the predictions.
The author has tested the time-splitting method for this exercise achieving a three-
fold reduction of the total simulation time. A modified code for Exercise 23 using
the time-splitting method is contained in the folder “Miscellaneous/Time Splitting
for Exercise 23” on the book’s ftp site. The following exercises, however, do not
make use of this method.
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5.7 The Thermohaline Circulation

5.7.1 The Abyssal Circulation

The abyssal circulation of the ocean is far less well known than the wind-driven
surface circulation. Knowledge about the deep circulation of the oceans has been
derived from spatial distributions of chemical tracers (Broecker and Peng, 1982)
and water mass properties; that is, temperature and salinity. Water-mass analysis
is a technique that allows to determine the relative distributions of distinct source
water masses along their path in the deep ocean. Tomczak and Godfrey (2003) give
a general overview of the method of water-mass analysis.

The abyssal circulation, also called thermohaline circulation, is driven by con-
vective formation of dense water in particular regions of the world ocean. The
key players in this deep and bottom circulation are North Atlantic Deep Water
(abbreviated as NADW), formed in the Labrador and Greenland Seas in the northern
North Atlantic Ocean, and Antarctic Bottom Water, formed in the Weddell Sea and
the Ross Sea of Antarctica. Influenced by the Coriolis force, dense water leaving
these regions appears as bottom-arrested gravity plumes.

The lower limb or cold branch of the thermohaline circulation in the north
Atlantic Ocean is the so-called Deep Western Boundary Current (abbreviated as
DWBC). It moves dense water formed by open-ocean convection in the Labrador
and Greenland Seas southward as a narrow subsurface flow along the western conti-
nental slope. The Deep Western Boundary Current can cross the equator and some of
its water eventually merges with the Antarctic Circumpolar Current to flow around
Antarctica and into the Indian and Pacific Oceans as North Atlantic Deep Water
(NADW). The pathway of NADW is associated with a time scale of 1,500 years,
which can been derived from radiocarbon dating, a method first described by Arnold
and Libby (1949).

In order to conserve volume, southward spreading of the DWBC must be accom-
panied by a northward return flow. If the volume transport associated with the
DWBC increases during its travel owing to entrainment of ambient water, the vol-
ume transport of the return flow has to increase as well. Open scientific questions
are where this return flow occurs and what the forcing mechanisms of this return
flow are. These questions are difficult to answer given that deep-ocean currents are
generally very weak and difficult to measure and given that currents of the upper
1,000–2,000 m of the water column are predominantly driven by winds which over-
shadows other flow contributions.

5.7.2 The Stommel-Arons Model

The permanent thermocline is a zone of rapid decrease of temperature with depth
in the tropics and subtropics reaching from the base of the seasonal thermocline
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to a depth of 1,500–2,000 m. In the sole presence of vertical diffusion of heat, the
permanent thermocline would gradually deepen and the abyssal oceans would grad-
ually become warmer until a thermodynamic equilibrium is being established. Since
this does not happen, there must be another process that overrides the downward
diffusive heat flux.

Based on earlier suggestions of Stommel (1958), Stommel and Arons (1960)
proposed a model for the abyssal circulation of the world ocean that is still subject
to intense debate by the scientific community. A key ingredient of this analytical
model, commonly called the Stommel-Arons model, is the assumption that large-
scale upwelling induced by geostrophic flow in the abyssal ocean balances vertical
diffusion of heat, such that the structure of the permanent thermocline is maintained.
Consider a two-layer ocean for illustration of this mechanism. For simplicity, the
deep layer is assumed to have uniform thickness h and density. Using the beta-
plane approximation (Eq. 4.7) gives a relationship between the vertical speed at the
top of bottom layer and the meridional geostrophic flow component v that can be
written as:

w = βh

f
v (5.16)

Consequently, upwelling at the top of the bottom layer is associated with a pole-
ward geostrophic flow in this layer. A meridional flow of a speed of v = 1 mm/s with
h = 2,000 m, for instance, would create a vertical upward displacement of isotherms
at a rate of 14 m per year.

A further ingredient of the Stommel-Arons model is the prescription of two sep-
arate regions of dense-water formation that operate as volume sources for the deep
layer; that is, the Greenland Sea/Labrador Sea and the Weddell Sea (ignoring the
Ross Sea contribution to Antarctic Bottom Water formation). Volume conservation
implies that poleward flow in deeper layers of the north Atlantic Ocean must be
returned southward by a narrow DWBC. Nevertheless, the volume carried by this
boundary current must be greater than that introduced at the source region given
that it also has to return the volume inherent with the poleward flow. To this end, the
DWBC carries some surplus volume across the equator and into the south Atlantic
Ocean.

Figure 5.17 illustrates the analytical result of the Stommel-Arons Model for
the Atlantic Ocean. Several inconsistencies of this model have been identified in
recent years. These include: (a) observed deep-ocean values of eddy diffusivity are
much less than those required to reproduce the Western Boundary Current with
the Stommel-Arons model; (b) the model does not include any dynamics actually
driving poleward deep flows, (c) variable bathymetry, such as mid-ocean ridges,
are not included, despite their control on the possible pathways of deep flows.
Despite these shortcomings, the Stommel-Arons model, proposed half a century
ago, is still the backbone of many present-day research projects undertaken in the
deep sea.
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Fig. 5.17 Schematic of the deep-ocean circulation in the Atlantic Ocean after Stommel (1958)
using GEBCO (General Bathymetric Chart of the Oceans) data

5.8 Exercise 24: The Abyssal Circulation

5.8.1 Aim

The aim of this exercise is to explore the dynamics of the deep circulation establish-
ing in a closed ocean basin on the beta plane.

5.8.2 Task Description

We consider a model domain of 1,000×1,000 km in horizontal extent (Fig. 5.18),
resolved by lateral grid spacings of Δx = Δy = 20 km, and a constant total depth
of 1,000 m, resolved by a vertical grid spacing of Δz = 200 m. The ocean is initially
at rest and uniform in density with ρ = 1,028 km/m3. The model domain includes a
separate semi-enclosed region of 200 × 200 km in horizontal dimension mimicking
a region of dense-water formation such as the Greenland Sea or the Labrador Sea in
the real situation. The model is forced by prescription of a density flux of 1 kg/m3 per
30 days applied to the entire water column north of y = 880 km. This forcing is
maintained during the entire model simulation lasting 120 days with data outputs
on a daily basis.
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Fig. 5.18 Model domain for Exercise 24

Lateral eddy viscosity and eddy diffusivity are set to a uniform value of Ah =
Kh = 1 m2/s using no-slip conditions for flow parallel to coastlines. Vertical eddy
diffusivities and eddy viscosities are diagnosed from Kochergin’s turbulence closure
scheme. The bottom friction parameter is set to a value of r = 0.001. The beta-plane
approximation assumes a Coriolis parameter that varies with meridional distance y
according to:

f (y) = fo + β y (5.17)

In this exercise, we use a reference Coriolis parameter of fo = 1 × 10−4 s−1

(mid-latitudes in Northern Hemisphere) and a meridional variation of the Coriolis
parameter of β = 2.2 × 10−11 s−1 m−1. A total of 5,000 non-buoyant floats are
initiated at random locations of the model domain to trace the trajectories of water
parcels (see Sect. 3.16). In addition to this, Eulerian tracer concentration is used
to identify regions experiencing upwelling during the simulation. To this end, the
initial tracer concentration is set to zero in the upper 500 m of the water column and
to values of unity below.

Owing to the smallness of resultant vertical speeds and associated round-off
errors, predicted concentration fields in the author’s pilot experiments showed
some unwanted noisy patterns. To hide this, lateral eddy diffusivity used in the
advection-diffusion equation for tracer concentration is increased to 100 m2/s as
a means of smoothing. This has no dynamical implications. The time step is
set to Δt = 200 s using the rigid-lid approximation to eliminate fast propagat-
ing surface gravity waves. The pressure accuracy of the S.O.R. iteration is set to
ε = 0.01 Pa.
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5.8.3 Results

The gradual density increase in the formation region creates a Deep Western Bound-
ary Current that spreads southward along the western side of the model domain
(Fig. 5.19). This boundary current is initiated by the Coriolis force which pushes
deep water against the coast. The resultant upward doming of the density interface
and geostrophic adjustment lead to steady-state dynamics. Note that an anticyclonic
eddy appears in bottom layers of the dense-water formation region. Owing to a net
influx of low-density water, the density excess in the formation region reaches a
steady value of around 2 kg/m3. This implies that density in a formation region is
bounded by an upper limit.

A return flow establishes in the upper ocean spanning the entire length of the
Deep Western Boundary Current (Fig. 5.20). This return flow is created by a drop
of the coastal sea level as consequence of the geostrophic adjustment of the dense
bottom layer. The adjacent ocean remains largely at rest. A counterclockwise rotat-
ing eddy appears in surface layers of the dense-water formation region. Upwelling
along the path of the boundary current leads to entrainment of bottom water into the
surface return flow. There is some indication of meandering of the boundary cur-
rent, but the inherent dynamics are grossly biased by the coarse lateral grid spacing
chosen.

In contrast to the Stommel-Arons model, a vertical rather than horizontal over-
turning circulation establishes here being concentrated to a narrow zone along the
western boundary. The final locations of selected Lagrangian floats nicely reveal
the boundary current (Fig. 5.21) together with the return flow that establishes in the
surface ocean (Fig. 5.22). This model application does not create any return flows in

Fig. 5.19 Exercise 24. Distributions of density (shading and contours) and horizontal flow field
(arrows) in the lowermost 200 m of the water column domain after 120 days of simulation. Arrows
for speeds <1 cm/s are omitted. Velocities are averaged over 2 × 2 grid cells
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Fig. 5.20 Exercise 24. Distributions of tracer concentration (shading and contours) and horizontal
flow field (arrows) in the uppermost 200 m of the water column after 120 days of simulation.
Arrows for speeds <1 cm/s are omitted. Velocities are averaged over 2 × 2 grid cells

Fig. 5.21 Exercise 24. Locations of Lagrangian floats, initially located in the formation region of
dense water north of y = 800 km after 120 days of simulation

the ocean interior, presumably because of the relatively short simulation time. Note
that the artificial southern coastline supports an eastward zonal flow. In reality, the
Deep Western Boundary Current encounters the equator. Dynamical consequences
of this encounter are discussed in the next section.
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Fig. 5.22 Exercise 24. Locations of Lagrangian floats, initially located south of y = 350 km, after
120 days of simulation

Findings presented here show an intrinsic coupling between the deep and sur-
face flows in the western boundary region of the Atlantic Ocean. This suggests that
the density-driven DWBC operates to intensify the wind-driven Western Boundary
Current in the north Atlantic Ocean; that is, the Gulf Stream and its extension, the
North Atlantic Current. A number of recent research projects explore this coupling
mechanism which is deemed to have a substantial impact on the climate of northern
Europe on time scales of 10–20 years (Broecker, 1999).

5.8.4 Additional Exercise for the Reader

Repeat this exercise with β = 0, yielding the so-called f plane. Does the β-effect
have a noticeable influence on the dynamics of the Deep Western Boundary Current?

5.8.5 Improved Float Tracking

Float locations are defined as distances from the point of origin of the Cartesian
coordinate system. In this book, the point of origin is defined at the vertical velocity
grid point w at k = 1, j = 1 and i = 1, which is aligned with the sea surface.
Prediction of the displacement of a float requires information of velocity in adjacent
grid points. To this end, the grid cell containing the float need to be identified and the
rest follows. The procedure is demonstrated here using the x-direction only. Analog
recipes apply for the other velocity components, noting that treatment for the vertical
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Fig. 5.23 Illustration showing the grid configuration and float coordinate for the x-direction.
Circles group grid points belonging to a certain grid index

direction is slightly different from that of horizontal directions. Figure 5.23 shows
the grid configuration together with the float’s x-coordinate. The first step of the
procedure is to locate the grid cell containing a float with reference to the closest
scalar grid point. This can be done with:

kpos = INT

(
x∗

Δx
+ 0.5

)
+ 1

where x∗ is the actual x-coordinate of the float, and “INT” truncates real numbers
into full (integer) numbers. The simplest scheme would then be to average surround-
ing velocity grid points onto the scalar grid point, yielding a velocity of:

〈u〉 = 0.5(uw + ue)

where uw = u(kpos − 1) and ue = u(kpos). This velocity can be used to move the
float around on the basis of the simple displacement equation:

dx∗

dt
= 〈u〉

This scheme has been used in some of the previous exercises, noting that strand-
ing of floats in dry grid cells can be avoided with use of additional conditions. An
improved scheme interpolates (rather than averages) the velocity from surrounding
grid points onto the location of the float. In the x-direction, for instance, this inter-
polation leads to:

u(x∗) = uw + δx∗ ue − uw

Δx
(5.18)

where δx∗ is the distance from the float to the western cell face (Fig. 5.24), given
by:

δx∗ = x∗ − Δx (kpos − 1) + 0.5Δx = x∗ + (1.5 − kpos)Δx
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Fig. 5.24 Definition of the distance δx∗. The circle indicates the float location. The subscript “i”
refers to the start location of the float

The displacement equation is now given by:

dx∗

dt
= u(x∗) (5.19)

With the abbreviation u′
x = (ue − uw)(Δx), Eqs. (5.18) and (5.19) can be com-

bined and integrated to yield:

∫ t+Δt

t
dt =

∫ e

i

dx∗

u(x∗)

where the integral boundaries “i” and “e” refer to the start and end locations of a
float. This integral gives:

u′
xΔt = ln

(
uw + δx∗

e u′
x

uw + δx∗
i u′

x

)

Finally, the distance traveled by the float over a time span of Δt can then be
calculated from:

Δx∗ = x∗
e − x∗

i =
(

uw

u′
x

+ δx∗
i

) [
exp (u′

xΔt) − 1
]

(5.20)

Notice that this scheme collapses when u′
x approaches zero. In this case, the

simple averaging method must be used instead. Errors arise when a float crosses a
cell boundary during a time step. This can be accommodated in the code by splitting
the method into parts, whereby the first sub-time step is based on the time is takes
for a float to approach the eastern or western cell face, and the remaining time step
continues with the adjacent scalar grid point as a new cell centre. To this end, the
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first sub-time step can be calculated from:

Δtmin = 1

u′
x

ln

(
δxedgeu′

x

uw + δx∗
i u′

x

+ 1

)

In distance to the respective boundary δxedge is defined as δxedge = Δx − δx∗
i for

eastward flow and as δxedge = −δx∗
i for westward flow.

For the case of Lagrangian floats, turbulence is described by the probability that
a particle is shifted a certain distance within a given time step (Maier-Reimer and
Sündermann, 1982). After Maier-Reimer (1980), maximum diffusive velocities can
be related to eddy diffusion coefficients. In the x-direction, for instance, this rela-
tionship reads:

umax =
√

6Ah

Δt

Turbulent velocity fluctuations can then be determined for each float with the
Monte-Carlo method which consists of multiplying each maximum current compo-
nent by a random generated number between −1 and 1. A displacement equation of
the form of Eq. (5.19) can be adopted to include turbulence effects on float motions.

Computer codes of this book only use the simple averaging method for float
predictions and ignore effects of turbulence. The implementation of more advanced
float tracking schemes remains for the reader.

5.9 The Equatorial Barrier

5.9.1 Inertial Oscillations About the Equator

A flow crossing the equator experiences a change of sign of the Coriolis force and
therefore becomes deflected back towards the equator (Fig. 5.25). It then again over-
shoots the equator owing to its inertia, and the Coriolis force on the other side of the
equator moves it back, and so on, in an oscillatory fashion. This unique behavior,
in which the equator acts as a waveguide, is the signature of inertial oscillations
about the equator. Whereas inertia oscillations in off-equatorial regions are associ-
ated with closed flow trajectories (in the absence of ambient flow), those centred on
the equator are always associated with a net eastward flow. The period of equatorial
inertial oscillations is approximately given by (e.g., Cushman-Roisin, 1994):

Teq = 1√
β Vo

(5.21)

where β is the meridional variation of the Coriolis parameter at the equator (β ≈
2.28 × 10−11 m−1 s1), and Vo is the initial speed of the flow crossing the equator.
With Vo = 0.2 m/s, Eq. (5.21) yields 5.4 days. The radius of the half-circle paths of
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Fig. 5.25 Schematic of inertial oscillations in the ocean

the flow can be estimated at:

req = Vo Teq =
√

Vo

β
(5.22)

For the previous values, this is about 94 km, or almost 1◦ of geographical latitude.
The length scale req can be referred to as equatorial inertial radius.

5.9.2 Variation to Exercise 24

The interaction of a bottom-arrested Deep Western Boundary Current with the equa-
tor can be explored with a slight modification of the configuration of Exercise 24.
The only change required is to modify the Coriolis parameter such that the equator,
defined by fo = 0 in Eq. (5.17), is shifted to y = 400 km of the previous config-
uration (see Fig. 5.22) and to enhance the beta effect by choosing β = 2.2×10−10

m−1 s−1. The choice of fo = 0 is commonly referred to as equatorial beta-plane
approximation.

5.9.3 Results

As can be seen with the result (Fig. 5.26), the DWBC becomes subject to equatorial
inertial oscillations deflecting this flow eastward along the equator. This is consistent
with observational evidence (Bourlès et al., 2003). The simulated boundary current
attains a speed of 0.9 m/s (real flows are much weaker than this). For this value,
Eq. (5.10) gives an equatorial inertial radius of 64 km, which is not well resolved by
the coarse mode grid chosen. Nevertheless, damped inertial oscillations are clearly
visible in the prediction. Findings presented here suggest that the equator can oper-
ate as a barrier for the DWBC.
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Fig. 5.26 Variation to Exercise 24. Distributions of density (shading and contours) and horizontal
flow field (arrows) in the lowermost 200 m of the water column domain after 120 days of simula-
tion. Arrows with speeds <1 cm/s are omitted. Velocities are averaged over 2 × 2 grid cells. The
dotted line highlights the equator

Recent studies (Dengler et al., 2004) indicate that the DWBC is a continuous
flow across the equator to a geographical latitude of 8o S where it breaks up into
eddies. This break-up into eddies is presumably initiated by strong curvature of
the flow path that establishes south of the equator owing to the sign change of the
Coriolis force (see Fig. 5.26). Interaction of the flow with variable topography, not
considered here, might also contribute to eddy shedding.

5.9.4 Additional Exercise for the Reader

Repeat this exercise with an initially stratified ocean. To this end, increase the
initial density of the lower 200 m of the water column by 2 kg/m3 and apply the
density forcing in the region of dense-water formation exclusively to the upper
800 m. Compare the resultant horizontal density fields for the lowest and the second
lowest model levels. Note that, after some time, the density forcing applied will
create unstable density stratification that, in the real world, would induce convec-
tive stirring of the water column. This mixing can be parameterised in Kochergin’s
turbulence closure scheme via use of a locally increased value of vertical eddy
diffusivity.
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5.10 Equatorial Waves

5.10.1 Background

The existence of the equator gives rise to special kinds of oceanic waves that oth-
erwise would not exist. The dynamical reason for such waves is that the Coriolis
force changes sign across the equator, giving rise to equatorial inertial oscillations
described in the previous section. However, there are other wave types existing in
vicinity of the equator. The most basic equations describing these waves rely on
the reduced-gravity concept for a two-layer ocean (e.g. Cushman-Roisin, 1994)
in which the bottom layer always adjusts such that the lateral flow in this layer
vanishes. If we describe the thickness of the upper layer as the sum of a constant
part ho and a fluctuating part η∗, the reduced-gravity concept leads to the following
equations for the lateral currents in the upper layer:

∂u

∂t
− β y v = −g′ ∂η∗

∂x
∂v

∂t
+ β y u = −g′ ∂η∗

∂y
(5.23)

∂η∗

∂t
+ ho

(
∂u

∂x
+ ∂v

∂y

)
= 0

where g′ is reduced gravity. The equatorial beta-plane approximation has been used
here together with the assumption that variations of the top-layer thickness remain
small, so that a constant thickness ho can be used in the volume-conservation equa-
tion. Note that η∗ is the negative of the interface displacement, simply because
interface displacements and layerthickness changes are opposite to each other.

5.10.2 Equatorial Kelvin Waves

The first breed of equatorial waves to be discussed are equatorial Kelvin waves
that can be extracted from the above equations with the assumption of vanishing
meridional flow; that is, v = 0, everywhere in the domain. In this case, the above
equations can be written as:

∂u

∂t
= −g′ ∂η∗

∂x

β y u = −g′ ∂η∗

∂y
(5.24)

∂η∗

∂t
+ ho

∂u

∂x
= 0
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The solution for zonally propagating waves is given by:

u = uo exp

(
− y2

2R2
eq

)
cos (kx − ωt)

v = 0 (5.25)

η∗ = Ao exp

(
− y2

2R2
eq

)
cos (kx − ωt)

where uo and Ao are interrelated constants, the wave number is defined by k = 2π/L
with L being wavelength, and the wave frequency is defined by ω = 2π/T with T
being wave period. The so-called equatorial radius of deformation is hereby defined
as:

Req =
√√

g′ho

β
(5.26)

It can be shown that these waves propagate at the speed of long internal gravity
waves,

√
g′ho, and that they can only propagate eastward along the equator. The

dynamic similarity to coastal Kelvin Waves justifies their name. The phase speed
of such waves is 0.5–1 m/s and the trapping distance, estimated by Req, is about
50–200 km.

5.10.3 Other Equatorially Trapped Waves

The following section has been adopted from Cushman-Roisin (1994). We seek
solutions of Eq. (5.24) that describe waves propagating in the zonal direction, but
this time in a more generalised form of:

u = U (y) cos (kx − ωt)

v = V (y) sin (kx − ωt) (5.27)

η∗ = A(y) cos (kx − ωt)

where the amplitude functions U (y), V (y) and A(y) need to be determined. Inser-
tion of this approach in Eq. (5.23) leads to the following relationships between the
amplitude functions:

ωU − β y V = g′k A

ωV − β y U = g′ d A/dy (5.28)

ωA − hokU = −ho dV/dy
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Combinations of the latter equations yield a single equation governing the merid-
ional structure of V (y):

∂2V

∂y2
+

(
ω2 − β2 y2

g′ho
− βk

ω
− k2

)
V = 0 (5.29)

It can be shown that this equation has the solutions:

V (y) = Hn

(
y

Req

)
exp

(
− y2

2R2
eq

)
(5.30)

where Hn is a so-called Hermite polynomial of the order of n with the first modes
being given by:

H0(ψ) = 1

H1(ψ) = 2ψ

H2(ψ) = 4ψ2 − 2

Notice that even polynomials are symmetric about the equator, whereas those of
odd order are antisymmetric. All waves are trapped in vicinity of the equator on a
trapping distance given by the equatorial radius of deformation and their dispersion
relation is given by:

ω2

g′ho
− k2 − βk

ω
= (2n + 1)β√

g′ho
(5.31)

where n is a positive integer including zero. Accordingly, waves are composed of a
discrete set of modes. For n ≥ 1, the waves subdivide into two classes. One branch
of waves are relatively fast propagating equatorially trapped inertia-gravity waves
that follow a dispersion relation according to:

ω ≈
√

2n + 1

T 2
eq

+ k2g′ho (5.32)

where the so-called equatorial inertial period is defined by:

Teq =
√

1

β
√

g′ho
(5.33)

Typical values for Teq are 2–3 days. This branch of equatorially trapped waves
includes a modified form of equatorial Kelvin Waves that, unlike the wave solution
described in the previous section, involves nonzero meridional flow. Figure 5.27
illustrates the surface pressure field and currents of such waves that, again, can only
propagate eastward along the equator.
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Fig. 5.27 Illustration of the horizontal flow field associated with centres of high pressure (elevated
sea level) or low pressure (lowered sea level) at the equator. Both patterns create flows that trigger
eastward propagation of the disturbance

The other branch of equatorially trapped waves follows the dispersion relation:

ω ≈ − βk

k2 + (2n + 1)/R2
eq

(5.34)

These waves, called equatorial planetary waves or equatorial Rossby waves,
travel westward at slow speeds and, hence, opposite to equatorial Kelvin waves.
The special case n = 0 is characterised by the dispersion relation:

ωTeq − 1

ωTeq
= k Req (5.35)

This wave exhibits a mixed behavior between planetary and inertia-gravity waves
and is therefore called mixed planetary-inertia-gravity wave. Interestingly, unlike
equatorial Kelvin waves, the mixed wave propagates westward along the equator.

Although all these distinct equatorial wave types exist in theory, they appear
in the real ocean only if being excited by some external mechanism. For instance,
dense water flows passing the equator can trigger equatorial inertial oscillations (see
previous exercise) and disturbances of the larger-scale equatorial wind system can
trigger equatorial Rossby waves (see next exercise). Spatial and temporal scales of
the initial perturbation determine hereby the wave type and wave mode that, in the
end, appears magnified in the ocean.

5.11 The El-Niño Southern Oscillation

5.11.1 Background

The El-Niño Southern Oscillation (ENSO) is a synonym of a pronounced climate
variation that occurs in the equatorial and tropical Pacific region on time scales of
2–10 years. This oscillation is caused by a large-scale dynamic and thermodynamic
interaction between the ocean and the atmosphere. Only a brief description of this
interaction is given here.
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In some years, warmer than average sea temperatures in the eastern equatorial
Indian Ocean and western Pacific Ocean trigger a local disturbance of the atmo-
spheric circulation, called the Walker circulation. As a result of this, a tropical
cyclone pair develops in the western equatorial Pacific Ocean and the Trade Winds
in this region are substituted by westerly (that is, eastward blowing) winds. The
modified atmospheric circulation, in turn, creates disturbances in the ocean’s den-
sity field via localised upwelling or downwelling. This triggers an equatorial Kelvin
wave propagating eastward to the other side of the Pacific where is suppresses the
semipermanent coastal upwelling of cold and nutrient-enriched water off the Peru-
vian and Californian coasts and leads to widespread kills of plankton, fish, and sea
birds. These occasions are called El Niño (Spanish for “the child”) events for they
occur usually around the Christmas season.

5.12 Exercise 25: Simulation of an El-Niño Event

5.12.1 Aim

The aim of this exercise is the simulate disturbances in the equatorial western Pacific
Ocean leading to an El-Niño event on the eastern side of the Pacific Ocean.

5.12.2 Task Description

The model domain has a horizontal extent of 2,000 × 2,000 km, resolved by lateral
grid spacings of Δx = Δy = 20 km (Fig. 5.28). Coasts are located in the west and in
the east. The northern and southern limits of the model domain are treated as open
boundaries. Total water depth is set to 250 m to allow for relatively long numerical
time steps noting that the free-surface version of the model is being used. Vertical
grid spacing is set to Δz = 50 m, and the numerical time step is set to 120 secs.
Initially, the ocean is at rest. Seawater density in the upper 100 m of the water col-
umn is set to 1,027 kg/m3. Underneath, the density is 1,028 kg/m3. The phase speed
of internal gravity waves associated with this density configuration is c = 0.75 m/s,
using Eq. (3.63). The equatorial beta-plane approximation is employed with:

f = βy (5.36)

where y is the meridional coordinate and β is set to β = 2.5 × 10−11 m−1 s−1. The
equator at y = 0 cuts the model domain in half. The equatorial radius of deformation
(take Eq. 5.27) is about 174 km, which is reasonably well resolved by the lateral
grid spacing chosen. The equatorial inertial period (take Eq. 5.34) is approximately
2.7 days.
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Fig. 5.28 Horizontal extent of the model domain and wind-stress forcing for Exercise 25

The model is forced via prescription of a short-lived westerly wind burst. This
forcing consists of a eastward wind stress of cosine shape in the y-direction
(see Fig. 5.26) of a maximum magnitude of 0.1 Pa at the equator. This wind-stress
forcing is only applied within a distance of 200 km from the western coast. The
wind-stress magnitude is gradually adjusted to its final value over the first 5 days of
simulation and turned off afterwards. Modified cyclic boundary conditions are used
for the northern and southern open boundaries via use of a “mirror” condition for
the meridional flow component reading:

v(i, 0, k) = −v(i, ny, k)

v(i, ny + 1, k) = −v(i, 1, k)

The advanced turbulence closure scheme proposed by Smagorinsky (1963) is
implemented to parameterise lateral eddy viscosity and diffusivity. This scheme,
described in the next section, is frequently employed by hydrodynamic modellers.
The free parameter of the scheme is set to c1 = 0.1, and a uniform background value
of 5 m2/s is added. The Kochergin turbulence closure scheme is employed again to
describe the effect of vertical mixing using c2 = 0.15 and a wind-induced value of
Kz = Az = 0.05 m2/s in the upper 100 m of the water column.

Both Eulerian tracer concentration and Lagrangian floats are used for visualisa-
tion of the dynamics. The tracer concentration field is initialised with zero values
in the upper 100 m of the water column and values of unity underneath. A total of
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5,000 Lagrangian floats are initialised at random locations of the model domain. The
total simulation time is 50 days with data outputs at 12-hrs intervals. The pressure
accuracy of the S.O.R. iteration is set to ε = 0.01 Pa.

5.12.3 The Smagorinsky Turbulence Closure Scheme

The turbulence closure scheme proposed by Smagorinsky (1963) reads:

Ah = c1ΔxΔy

√(
∂u

∂x

)2

+
(

∂v

∂y

)2

+ 0.5

(
∂u

∂y
+ ∂v

∂x

)2

(5.37)

where c1 is a parameter often set to values between 0.1 and 0.2.

5.12.4 Warning

Completion of this simulation might take one or more days. Also, SciLab might
crash occasionally owing to memory limitations. To avoid these problems, the reader
might double lateral grid spacings to Δx = Δy = 40 km using half the number of
grid points for both the x- and the y-direction. This, however, will incur a severe
loss in spatial resolution.

5.12.5 Results

The westerly wind burst creates an initial depression of the thermocline travelling
eastward along the equator over a distance of 2000 km in form of an equatorial
Kelvin Wave (Fig. 5.29). The phase speed of this wave is approximately 66 cm/s,
which is slightly less than predicted by theory (take Eq. 3.63). The imprint of
the Kelvin Wave is a circular patch in the Eulerian tracer concentration field and,
accordingly, in the density field. This imprint is associated with transient downward
pumping of the pycnocline whereby the wave depresses the pycnocline by 30–50 m.
The radius of the circular patch is 200 km, being of the order of the equatorial radius
of deformation. A second wave develops behind the trailing wave.

As the trailing wave meets the eastern coastline, it disintegrates into two coastal
Kelvin waves propagating away from the equator in the respective hemisphere.
Turbulence-enhanced vertical mixing leaves behind some perturbation in the density
field and weak currents in the western equatorial region of the model domain. With a
closer inspection, we can also spot planetary Rossby waves not far from the western
boundary slowly propagating westward.

Owing to the trade winds and the Coriolis parameter changing sign across the
equator, equatorial regions are generally prone to upwelling which operates to
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Fig. 5.29 Exercise 25. Selected snapshots of horizontal distributions of Eulerian tracer concentra-
tion (color shading and contours) at a depth horizon of 150 m. Blue shading refers to decreased
concentrations. Black arrows are lateral flow vectors

lower sea-surface temperature by a couple of degrees. Transient equatorial Kelvin
waves associated with a high-pressure centre (such as that simulated here) oper-
ate to suppress this equatorial upwelling along their path. Hence, satellite-derived
sea-surface temperature can be used to trace the passage of equatorial Kelvin
waves.

5.12.6 Additional Exercises for the Reader

Consider an easterly wind burst near the eastern coast of the model domain. Does
any of the waves created propagate to the western side of the model domain?
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5.13 Advanced Lateral Boundary Conditions

5.13.1 Background

Lateral boundary conditions do not only control the flow of fluid properties across a
boundary but also the dynamical behavior of waves as these meet a boundary. Partial
wave reflection is a common problem. The aim of this section is to introduce the
reader to different types of lateral boundary conditions that can be used to improve
the model performance. There are two different kind of open boundary conditions:
(a) conditions that are used as forcing in order to create a certain inflow through a
boundary, and (b) conditions that allow for undisturbed propagation of waves and
flow across a boundary.

Conditions of the first kind can be referred to as inflow conditions, those of the
second kind as outflow conditions, noting that the latter also includes wave signals.
Sponge layers are sometimes used in addition to this to filter away dynamical dis-
turbances as these approach a downstream boundary.

5.13.2 Consistency

The horizontal pressure gradient force plays a dominant role in the dynamics of
oceanic flows. Hence, adequate choice of lateral boundary conditions for dynamic
pressure is uttermost crucial. In terms of lateral boundary conditions, “consistency”
means that the boundary condition used for dynamic pressure has to be consistent
with those set for velocity components. Often it is the best approach to employ
lateral boundary conditions for dynamic pressure only and, if possible, to use the
numerical code to predict boundary values of the velocity component normal to
the boundary. Prescription of boundary values for all variables is not recommended
since this can lead to inconsistency in the dynamics and unwanted side effects.

5.13.3 Inflow Conditions

For wave problems excluding Coriolis effects, it is often sufficient to prescribe
dynamic pressure variations at a lateral boundary and to calculate velocities inside
the prediction code. Steady geostrophic inflows such as those in Exercise 21 are best
realised via prescription of flow components normal to the boundary in conjunction
with vanishing gradients of dynamic pressure normal to the boundary which filters
away unwanted geostrophic flow running parallel to a boundary. Another commonly
applied method is the method of one-way nesting of a smaller model domain inside
a larger model domain and to use predictions from the larger domain as boundary
conditions for the smaller domain.

Lateral boundaries for combined geostrophic flow and wave problems are dif-
ficult to deal with. One solution would be to decompose dynamic pressure into
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a time-mean component driving the geostrophic inflow and a superposed time-
variable component representing incident waves such as tides. The geostrophic part
can then be described along the boundary as a background distribution, gradually
blended in during the first few days of a simulation, and the time-variable part can
be added via a prognostic equation of the form:

∂qb

∂t
= qoω sin (ωt) (5.38)

where qb is boundary dynamic pressure, and qo and ω are amplitude and frequency
of the time-variable forcing. The reader is encouraged to test this type of forcing for
a simplified open channel configuration.

Inflow conditions for water properties such as temperature and salinity are
straight forward. These properties are simply prescribed as fixed boundary values
so that the inflow carries these via the advection scheme into the model domain.
Establishment of sharp density gradients near open boundaries can be avoided with
the use of an adjustment method, commonly called Rayleigh damping, of the form:

ψn+1
b = ψn

b + Δt

T

(
ψo − ψn

b

)
(5.39)

where ψb is the boundary value of either temperature or salinity, T is a prescribed
adjustment period, and ψo is the target boundary value.

5.13.4 Outflow Conditions

The formulation of outflow conditions at open boundaries is not a trivial task given
that both steady currents and wave signals can simultaneously interfere with such
a boundary. Unwanted partial wave reflection at open boundaries is a common
problem. Different types of outflow boundary conditions are best demonstrated
with a focus on the propagation of long linear surface gravity waves in a chan-
nel of uniform depth ho. The dynamics of such waves can be approximated by the
equations:

∂u

∂t
= −g

∂η

∂x
(5.40)

∂η

∂t
= −ho

∂u

∂x
(5.41)

where u is velocity, t is time, g is acceleration due to gravity, η is seasurface ele-
vation, and x is distance along the channel. Assumptions are that the wave period
is short compared with the Coriolis force (so that the latter can be ignored), that
the wave’s phase speed exceeds the flow speed by far (so that the nonlinear terms
can be ignored), that the hydrostatic balance holds (such that the resultant flow is
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Fig. 5.30 Arakawa C-grid for one-dimensional shallow-water applications

barotropic), that frictional effects are negligibly small, and that sea-level anomalies
η are small compared with undisturbed water depth ho (leading to simplification of
the volume conservation equation Eq. (5.41)).

On the basis of the one-dimensional version of the Arakawa C-grid (Fig. 5.30),
the explicit numerical finite-difference scheme of the above equations can be for-
mulated in three subsequent steps given by:

u∗
k = un

k − Δt g
(
ηn

k+1 − ηn
k

)
Δx (5.42)

ηn+1
k = ηn

k − Δt ho
(
u∗

k − u∗
k−1

)
Δx (5.43)

un+1
k = u∗

k (5.44)

where n is the time level, Δt is the numerical time step, and Δx is the grid spacing.
We assume that the computational domain covers the grid cells from k = 1 to
k = nx and that the cells k = 0 and k = nx + 1 are reserved for the implementation
of boundary conditions. Care has to be taken here, given that the above equations are
not symmetric with respect to the boundary conditions. The prediction for η does
not use data of unx+1 and the prediction of u does not use values of η0. If we want
to prescribe boundary conditions for η but not for u, this implies that u also needs
to be predicted in the grid cell k = 0, which is assumed in the following.

5.13.5 Zero-Gradient Conditions

Zero-gradient conditions, also called von Neumann conditions, are sometimes
employed for dynamic pressure at open boundaries for elimination for geostrophic
flow components parallel to a boundary. For the barotropic surface gravity wave
mode, being embedded in the dynamics, this condition implies vanishing flow nor-
mal to the boundary (unx = 0 and u0 = 0). Hence, these conditions imply full wave
reflection at lateral boundaries resulting is a standing wave that can significantly
bias the predictions in the interior of the model domain.
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5.13.6 Radiation Conditions

How can we achieve that a gravity wave escapes through a lateral boundary with no
or only little reflection? The analytical solution of Eqs. (5.40) and (5.41) for a single
wave is given by:

η = ηo sin

[
2π

λ
(x − ct)

]
(5.45)

u =
√

g

ho
ηo sin

[
2π

λ
(x − ct)

]
(5.46)

c = ±
√

gho (5.47)

where ηo and λ are amplitude and wavelength of the disturbance, and c = λ/T (T is
wave period) is the propagation speed of the disturbance. These solutions imply that
a single sinusoidal wave pattern moves at a speed of c toward a lateral boundary.

On the other hand, movement of a signal ψ at speed c can be described by the
advection equation:

∂ψ

∂t
= −c

∂ψ

∂x
(5.48)

For a single wave of known phase speed c, this equation can be used to predict
changes of the boundary value via use of an advection scheme. In this context,
Eq. (5.48) is known as the Sommerfeld radiation condition (Sommerfeld, 1949).
With use of the upstream scheme, for instance, boundary data can be predicted with:

ψn+1
b = ψn

b (1 − C) + Cψn
b−1 (5.49)

where b refers to the boundary grid cell, b − 1 is the adjacent grid cell, and
C = |c| ΔtΔx is the Courant number. This equation is replaced by a zero-gradient
condition if the direction of c is directed into the model domain. Obviously, C ≤ 1
is required for the sake of numerical stability. The propagation speed c, however,
is generally not known. For more complex processes, this speed can be a complex
superposition of various wave types (e.g. gravity waves, Kelvin waves and Rossby
waves) appearing as barotropic and/or baroclinic wave modes. To overcome this
problem, the propagation speed in Eq. (5.48) can be estimated using the relation:

c = − ∂ψ/∂t

∂ψ/∂x
(5.50)

This approach, first proposed by Orlanski (1976), requires reference to interior
grid-point values at preceding times. An example is:
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C = ψn
b−1 − ψn−1

b−1

ψn−1
b−2 − ψn−1

b−1

(5.51)

This expression can be substituted into Eq. (5.49) yielding the boundary condi-
tion:

ψn+1
b = ψn

b

(
ψn

b−1 − ψn−1
b−2

) − ψn
b−1

(
ψn

b−1 − ψn−1
b−1

)
ψn−1

b−1 − ψn−1
b−2

(5.52)

It is worth mentioning that Orlanski’s original approach led to the scheme:

ψn+1
b = ψn−1

b

(
ψn

b−1 − ψn−1
b−2

) − ψn
b−1

(
ψn

b−1 − ψn−2
b−1

)
ψn−2

b−1 − ψn−1
b−2

(5.53)

Miller and Thorpe (1981) describe other schemes approximating Eq. (5.50). The
implementation of radiation conditions implies use of more than two time levels.
As outlined above, radiation conditions should be applied to dynamic pressure only,
whereas velocity components normal to open boundaries should be directly pre-
dicted with the numerical scheme. Three-dimensional applications including the
Coriolis force require additional conditions for flow running parallel to an open
boundary.

5.13.7 Sponge Layers and Low-Pass Grid Filters

Various methods can be used to eliminate unwanted dynamic disturbances in close
vicinity of a downstream boundary. Gradual increase of bottom friction towards
an upward boundary is a common approach. In case of quasi-geostrophic flows,
however, this can lead to unwanted flow convergence/divergence in the bottom
Ekman layer. The associated modification of the surface pressure field can mod-
ify the geostrophic flow field in the entire model domain. Hence, bottom-friction
enhancement should not be employed in geostrophic applications. A better option is
to employ Rayleigh damping (see Eq. 5.39) to selected velocity components using a
damping parameter that increases from zero at some distance from the boundary to a
maximum value at the boundary. Finding the “best” value is often a time-consuming
trial-and-error task.

Low-pass grid filters, on the other hand, are based on the fact that a numerical grid
can only resolve disturbances of a wavelength exceeding the grid spacing. Gradual
increase of the grid spacing towards an open boundary therefore gradually filters
away wave disturbances. When using this method, the rule of thumb is that grid
spacings should not increase by more than 10% from one grid cell to the next to
avoid numerical problems. It is obvious that low-pass grid filters should only be
used near outflow boundaries.
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5.14 Final Remark

All fluid processes described in this book are governed by different versions of
the Navier-Stokes equations. The numerical model, gradually developed from Exer-
cise 1 through to Exercise 25, is backward compatible, which implies that the same
model applied to simulate equatorial Kelvin waves or the abyssal circulation can
be used to simulate short gravity waves or small-scale convective plumes. That the
Navier-Stokes equations, which can be written down on a sheet of paper in a few
lines, embrace such a rich variety of hydrodynamic processes is truly fascinating.

5.15 Technical Information

This book has been written in LATEX using TeXnicCenter that can be downloaded
from:

http://www.toolscenter.org/

in conjunction with MikTeX (Version 2.5) – a very nicely prepared LATEX imple-
mentation for Windows platforms which can be downloaded at:

http://miktex.org/

Most graphs of this book were created with SciLab. Most sketches were made with
Microsoft Word. GIMP has been used for the manipulation of images. GIMP is a
cost-free alternative to commercial graphical manipulation programs such as Adobe
Photoshop Elements. This software can be freely downloaded from:

http://www.gimp.org/
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